Шрифт:
Интервал:
Закладка:
В «Основаниях» Рассел и Уайтхед отстаивали ту точку зрения, что математика в целом зиждется на проработке и развитии законов логики и между ними нет четкого разграничения[129]. Однако, чтобы добиться самодостаточного описания, им нужно было каким-то образом обуздать антиномии, или парадоксы (вдобавок к парадоксу Рассела нашлись и другие). Это требовало очень хитроумных логических манипуляций. Рассел считал, что эти парадоксы возникают исключительно из-за «порочного круга», когда сущности определяют в терминах класса объектов, который сам содержит определяемую сущность. Вот как он об этом писал: «Если я говорю “Наполеон имел все качества, которые сделали его великим полководцем”, я должен определить “качества” таким образом, который не включал бы то, о чем я сейчас говорю, то есть “обладание всеми качествами великого полководца” не должно быть качеством в предположенном смысле». Чтобы избежать этого парадокса, Рассел предложил «теорию типов», в которой класс (множество) принадлежит к более высокому логическому типу, чем его члены[130]. Например, все отдельные игроки футбольной команды «Далласские ковбои» принадлежали бы к типу 0. Сама команда «Далласские ковбои», класс игроков, принадлежала бы к типу 1. Национальная футбольная лига, класс команд, была бы типа 2, а совокупность лиг, если бы таковая существовала, – типа 3 и так далее. По этой системе сама идея класса, который является членом самого себя, не ложна и не истинна, а просто бессмысленна. Поэтому парадоксы наподобие парадокса Рассела в системе Рассела и Уайтхеда не встречаются.
Нет никаких сомнений, что «Основания» – монументальное достижение в логике, однако едва ли можно считать этот труд долгожданными основами математики. Теорию типов Рассела многие считают несколько искусственным способом избавиться от проблемы парадоксов[131], причем этот способ сам по себе приводит к разным неприятным осложнениям. Например, рациональные числа, то есть простые дроби, принадлежат, как выяснилось, к более высокому типу, чем натуральные числа. Чтобы избежать некоторых таких осложнений, Рассел и Уайтхед ввели дополнительную аксиому, так называемую аксиому сводимости, которая сама по себе вызывает серьезные противоречия и недоверие.
Математики Эрнст Цермело и Абрахам Френкель предложили более изящные способы искоренить парадоксы. Они, в сущности, сумели снабдить теорию множеств самодостаточной системой аксиом и воспроизвести большинство результатов этой теории. На поверхностный взгляд сбылась мечта платоников – по крайней мере, отчасти. Если теория множеств и логика и в самом деле две стороны одной медали, значит, прочный фундамент теории множеств обеспечивает и прочный фундамент логики. А если к тому же почти вся математика выводится из логики, это придает математике своего рода объективную надежность, которую, кроме всего прочего, можно было бы привлечь для объяснения эффективности математики.
К сожалению, ликовали платоники недолго, поскольку их почти сразу же постиг тяжелый случай дежавю.
В 1908 году немецкий математик Эрнст Цермело (1871–1953) прошел по пути, очень похожему на тот, который проложил Евклид около 300 года до н. э.[132]. Евклид сформулировал несколько недоказуемых, но, как предполагалось, самоочевидных постулатов о точках и линиях, а затем на их основании выстроил геометрию. Цермело – который независимо нашел парадокс Рассела еще в 1900 году – предложил способ выстроить теорию множеств на таком же аксиоматическом фундаменте. В его теории парадокс Рассела обходился при помощи тщательного отбора принципов конструирования, исключавших противоречивые идеи вроде «множества всех множеств». Систему Цермело в 1920-е годы развил и дополнил израильский математик Абрахам Френкель (1891–1965), в результате чего была создана так называемая теория множеств Цермело-Френкеля (важные коррективы внес и Джон фон Нейман в 1925 году)[133]. Все складывалось почти идеально, оставалось лишь доказать непротиворечивость, однако очень скоро возникли неприятные подозрения. Была одна аксиома – аксиома выбора, – которая, в точности как знаменитый «пятый постулат» Евклида, не давала математикам спокойно спать. На простом и понятном языке аксиома выбора гласит: если Х – набор (множество) непустых множеств, можно выбрать по одному члену из каждого множества в Х и сформировать из них новое множество Y[134]. Легко убедиться, что это утверждение истинно, если набор X не бесконечен. Например, если у нас сто коробок и в каждой лежит по крайней мере по одному стеклянному шарику, можно запросто взять по шарику из каждой коробки и сформировать новое множество Y, в которое войдут сто стеклянных шариков. В таком случае нам и особой аксиомы не нужно – мы можем доказать, что такой выбор возможен. Это утверждение верно и для бесконечных наборов Х, если только мы можем точно указать, как именно мы делаем выбор. Представьте себе, например, бесконечный набор непустых множеств натуральных чисел. Членами этого набора могут быть множества вроде {2, 6, 7}, {1, 0}, {346, 5, 11, 1257}, {все натуральные числа от 381 до 10 457} и тому подобные. В каждом множестве натуральных чисел всегда есть одно самое маленькое число. Поэтому наш выбор вполне можно однозначно описать следующим образом: «Из каждого множества мы выбираем наименьший элемент». В таком случае опять же можно обойтись без аксиомы выбора. Сложности возникают с бесконечными наборами в тех случаях, когда мы не можем определить способ выбора. В таких случаях процесс выбора никогда не кончается, и существование множества, в котором содержится ровно по одному элементу из каждого члена набора X, становится вопросом веры.
Аксиома выбора с самого начала породила среди математиков серьезные споры. Поскольку она постулирует существование определенных математических объектов, то есть «выборов», не обеспечивая никаких сколько-нибудь осязаемых примеров таких объектов, на это обрушился шквальный огонь, особенно со стороны приверженцев философской школы под названием конструктивизм (родственной интуиционизму). Конструктивисты считали, что все сущее должно быть также эксплицитно конструируемым. Другие математики также старались обойти аксиому выбора и при работе с теорией множеств Цермело-Френкеля ограничивались всеми остальными аксиомами.