Шрифт:
Интервал:
Закладка:
Так или иначе, многоклеточные организмы и одноклеточные – такие как диатомеи и радиолярии – в эмбриональном периоде развиваются совершенно по‐разному, и если между этими калейдоскопическими процессами есть какое‐то сходство, то по чистой случайности. Мы рассматривали пример многоклеточного животного, медузы, с четырехлучевой симметрией. Число лучей четыре и кратное четырем свойственно медузам, это легко реализуется за счет дупликации некоторых процессов в ходе эмбрионального развития. Трахимедузы из класса гидроидных (класс Hydrozoa) обладают шестилучевой симметрией (рис. 7.7)[23].
Рис. 7.7. Медузы с шестилучевой симметрией.
Рис. 7.8. Иглокожие из разных групп; слева направо: офиура, морская звезда (с неодинаковыми лучами – возможно, из-за травмы и последующего восстановления), морская лилия, плоский морской ёж.
Иглокожие – самые типичные образчики пятилучевой симметрии; к этому обширному типу (тип Echinodermata) колючих обитателей морей относятся морские звезды, морские ежи, офиуры, голотурии (морские огурцы) и морские лилии (рис. 7.8)[24]. Есть мнение, что их древними предками были животные с трехлучевой симметрией, но вот уже свыше полумиллиарда лет они живут с пятью лучами, и логично предположить, что пятилучевая симметрия составляет основу одной из наиболее консервативных схем строения тела, столь милых глобальному мышлению некоторых зоологов. Однако в природе немало морских звезд, у которых количество рук отлично от пяти; более того, даже среди добропорядочных пятируких видов попадаются отдельные особи с трех-, четырех- и шестилучевой симметрией, что противоречит такой идеалистической точке зрения.
С другой стороны, лучевая симметрия характерна даже для ползающих иглокожих, хотя от животного, которое всю жизнь копошится на морском дне, этого совсем не ждешь. И видимо, лучевая симметрия – вовсе не пустяк для них: все их руки одинаковы, и им все равно, куда идти. В каждый момент времени одна из рук морской звезды играет роль ведущей, но потом другая рука становится главнее. За долгие годы эволюции некоторые иглокожие “заново открыли” для себя билатеральную симметрию. У сердцевидных и плоских морских ежей, которые зарываются в песок и, очевидно, в борьбе с его массой должны были обрести обтекаемые контуры тела (в целом явно те же, что у морских ежей с пятилучевой симметрией), сформировалась передне-задняя асимметрия и, сверх того, лево-правая асимметрия.
Пытаясь “вывести” с помощью “Слепого часовщика” правдоподобные биоморфы, я хотел сделать их похожими на настоящих, фантастически красивых иглокожих. Однако все мои попытки воссоздать пятилучевую симметрию провалились. Эмбриологический калейдоскоп “Слепого часовщика” оказался не тем, что нужно. Ему недоставало необходимого количества “зеркал”. Но, как мы знаем, среди иглокожих встречаются “белые вороны”, уклонившиеся от обязательной пятилучевой симметрии, и я немного смухлевал – нарисовал морских звезд, офиур и морских ежей с четным числом лучей (рис. 7.9).
Рис. 7.9. Компьютерные биоморфы – почти такие же, как настоящие иглокожие, только вот пятилучевую симметрию воссоздать не удается. Для этого пришлось бы переписать всю программу.
Ничего не поделаешь – существующая версия программы “Слепой часовщик” не позволяет разводить биоморфы с пятилучевой симметрией (этот факт подтверждает главную идею данной главы). Чтобы исправить недочет, мне пришлось бы переписать программу (не просто изменить число мутаций для имеющегося в наличии гена, а добавить еще одно “зеркало”) и ввести новый тип калейдоскопических мутаций. Я уверен, что при этом можно было бы добиться гораздо большего сходства с большинством основных групп иглокожих за счет обычных случайных мутаций и отбора, пусть и длительного. С помощью описанной в “Слепом часовщике” первой версии программы удается воспроизвести лишь те мутации, что зеркально отражаются слева направо. Я решил переделать ее – запрограммировать серию “зеркал” с генетическим контролем, – и сейчас с помощью этого открытого для пользователей ресурса можно создавать биоморфы с четырехлучевой симметрией, в виде свастики и трехконечной “вертушки”.
Я рассказал вам о разных типах симметрии, чтобы объяснить суть калейдоскопической эмбриологии. В живой природе есть еще один не менее важный, хотя не такой зрелищный, феномен – сегментация (метамерия). Сегментация – это сериальное повторение элементов строения организма вдоль всего тела, и чаще она наблюдается у животных с длинным, зеркально симметричным телом. Первыми вспоминаются аннелиды (кольчатые черви, сухопутные земляные черви, а также морские кольчатые черви – пескожилы, нереиды и другие) и членистоногие (насекомые, ракообразные, многоножки, трилобиты и прочие), но и позвоночным вроде нас тоже присуща метамерия, хотя несколько иного рода. Тело членистоногого представляет собой последовательный ряд сегментов с теми или иными особенностями – вроде железнодорожного состава, в котором все вагоны примерно одинаковые, но с небольшими отличиями. Многоножка подобна товарному поезду с похожими как две капли воды вагонами. Других членистоногих можно считать улучшенными моделями многоножек: в их поездах каждая открытая платформа и каждый вагон имеет свое назначение (рис. 7.10).
Строение тела многоножки примитивно и однообразно. По всей длине “состава” повторяются объемные, зеркально симметричные фрагменты. Но если отойти дальше от многоножек и их разновидностей, станет заметна устойчивая эволюционная тенденция к уменьшению сходства между сегментами – не все эффекты мутаций будут просто повторяться в каждом сегменте. Насекомые напоминают многоножек, у которых ножки остались только в трех сегментах – седьмом, восьмом и девятом, считая от головы. У пауков конечности сохранились в четырех сегментах. На самом деле и пауки, и насекомые помимо своих собственно ножек частично сохранили и первичные конечности. Просто они используют их иначе – например, как антенны или челюсти. Омары и, скорее даже, крабы продвинулись еще дальше по пути дифференциации сегментов.