litbaza книги онлайнИсторическая прозаСамая большая ошибка Эйнштейна - Дэвид Боданис

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 57 58 59 60 61 62 63 64 65 ... 71
Перейти на страницу:

Приложение Путеводитель по теории относительности для дилетантов

Эту книгу вполне можно читать без всякого приложения: оно просто чуть подробнее разъясняет, как работает относительность. Если вы его пропустите, ваше впечатление от книги не изменится. А если вы особенно жадны до чтения, зайдите на davidbodanis.com, там есть текст в 22 тысячи слов, который еще глубже погрузит вас в теорию относительности.

Почему время искривляется: случай Кинг-Конга

Идею о том, что искривляется не только пространство, но и время, впервые как следует развил один из профессоров Эйнштейна – Герман Минковский. В 1908 году на лекции в немецком Кёльне, говоря об эйнштейновских работах 1905 года, он заметил: «Эйнштейн представляет ее [свою специальную теорию относительности] очень неуклюже, если взглянуть на его работу глазами математика. Я могу сказать это с полным правом, ибо свое математическое образование он получил у меня в Цюрихе».

Развивая идею Эйнштейна, Минковский уподобил пространство горизонтальной плоскости, а время изобразил как перпендикулярную этой плоскости вертикальную ось, торчащую из нее. Представьте себе большой стол, в центре которого стоит длинный тонкий подсвечник. Все привыкли считать время и пространство совершенно отдельными друг от друга царствами, но Минковский хотел изменить это представление: «Объекты нашего восприятия неизменно включают в себя комбинацию места и времени. Никто никогда не замечал никакого места вне времени – и никакого времени вне места».

По мнению Минковского, лучше говорить о том или ином местоположении и соответствующем времени не по отдельности, а как о едином целом – о «событии». Чтобы описать «пространство – время» – такую вот смесь, куда вписываются все из возможных событий, – потребуется просто составить большой список, где каждая строчка будет содержать по четыре числа.

Звучит как-то абстрактно? Но ведь мы постоянно проделываем именно это. Представьте, что ваш прадедушка одним свежим вечером 1933 года гуляет по Нью-Йорку и вдруг замечает на вершине Эмпайр-стейт-билдинга, на высоте почти 430 метров, какое-то гигантское волосатое животное. Он хочет оповестить об этом прессу. Отыскав телефон и позвонив в New York Herald Tribune, он может, запинаясь, пробормотать: «Там… там… на верхушке Эмпайра… господи помилуй, я эту тварь отсюда вижу!» Но если и он, и взявший трубку репортер понимают символьную стенографию Минковского, ваш предок мог бы куда более лаконично сообщить: «Пятая авеню, Тридцать третья улица, четыреста тридцать метров, двадцать часов тридцать минут!»[11] А если они оба понимают, что такое координатная сетка Минковского, то очевидец может сделать еще более краткое сообщение: «5, 33, 430, 20:30»! Фоторепортеры газеты будут точно знать, куда нужно прибыть: угол Пятой авеню и Тридцать третьей улицы, вверх, на шпиль небоскреба (возвышающийся над землей на 430 метров), где – по крайней мере, в 20:30 – находился самый крупный из обитателей города.

Но допустим, что Кинг-Конг не любит рекламу и поэтому, прихватив с собой актрису-блондинку, напрямик отправляется через центр Манхэттена прямо на сияющую вершину Крайслер-билдинга, который расположен неподалеку и который кажется ему более надежным убежищем. Если ваш прадед по-прежнему наблюдает за гигантской обезьяной и если у него есть поблизости телефон, он может сообщать журналисту Tribune об изменении координат объекта, начинающего соскальзывать с вершины Эмпайр-стейт-билдинга. Через пять секунд после начала такого движения очевидец сообщит, допустим: «5, 35, 420, 20:30:05», еще через пять секунд – «5, 36, 400, 20:30:10» – и так далее, пока парочка не окажется на вершине чуть менее высокого небоскреба – Крайслер-билдинга, расположенного на Сорок второй улице.

Именно это и имел в виду Минковский, когда утверждал, что каждое отдельное событие (каждую отдельную точку в пространстве и времени) можно идентифицировать при помощи группы из четырех чисел. Можно представить себе гигантский том, куда занесены все-все события во Вселенной – как прошлого, так и будущего. В своей лекции 1908 года Минковский шутливо заметил, что такое занятие было бы нелепо: «При помощи сего доблестного кусочка мела я мог бы спроецировать на эту доску четыре оси, держащие наш мир». Согласно представлениям многих религий, их Бог способен сделать именно что-то в этом роде. Впрочем, Минковский не побоялся обвинений в кощунстве и прямо объявил, каким образом нетрудно достичь такого всеведения.

Но тут возникает серьезный вопрос. Должно ли происходящее с первыми тремя числами (описывающими расположение события в пространстве) быть увязано с четвертым числом (описывающим расположение события во времени)? Если да, то пространство не является чем-то отдельным от времени, и для полного описания происходящего мы всякий раз должны учитывать и пространство, и время.

Чтобы ответить на этот вопрос, Минковский стал выяснять, как определить расстояние между двумя событиями. Для вашего прадеда расстояние между исходным событием (Кинг-Конг на верхушке Эмпайр-стейт-билдинга) и вторым событием (Кинг-Конг на верхушке Крайслер-билдинга, небоскреба, который примерно на 120 метров ниже) можно выразить как-нибудь так: «Три авеню, восемь улиц, 330 метров, 2 минуты». Но вспомните, что для объектов, которые движутся относительно вас, время идет с иной скоростью. Когда ваш прадедушка глядит на Кинг-Конга, скользящего над Манхэттеном, ему кажется, что исполинская обезьяна движется не особенно быстро, однако для Кинг-Конга время его путешествия будет чуть меньше по сравнению с тем, каким оно кажется нашему очевидцу.

(Почему время так меняется? Представьте себе, что рядом с вами стоит машина, в которой сидит ваша приятельница, стучащая мячом об пол салона. Мячик движется вверх-вниз, и вы с вашей подружкой, разумеется, сойдетесь во мнении насчет того, какое расстояние он при этом пролетает. Пускай теперь она заведет машину и поедет, а вы будете стоять на обочине и наблюдать. Для вашей подруги мяч будет по-прежнему скакать вверх-вниз (эксперимент мысленный: в реальной жизни не стоит забавляться мячом, управляя автомобилем). Но для вас мяч будет проходить более длинный путь – по мере того, как машина будет двигаться по дороге вперед.

А теперь представьте, что скачет не мячик, а луч света. И для вас, и для вашей подруги он будет двигаться с одной и той же скоростью (Эйнштейн показал, что это свойственно свету). Тут-то и возникает странность. Вашей приятельнице кажется, что луч света в ее машине проходит небольшое расстояние. Вам же кажется, что он (двигаясь с той же скоростью, потому что скорость света всегда неизменна[12]) преодолевает при этом большее расстояние.

Как нечто может преодолевать два разных расстояния, двигаясь с одной и той же скоростью? Эйнштейн осознал, что единственный ответ здесь такой (выразим его посредством нашего мысленного эксперимента): если с вашей точки зрения – с точки зрения стоящего на обочине наблюдателя – время в движущемся автомобиле замедляется, у летящего света появляется больше времени на движение, и он успевает покрыть большее расстояние. Такой эффект будет проявляться для всех объектов, которые движутся относительно вас, будь то автомобили, космические корабли или даже воображаемые гигантские обезьяны, ловко скользящие по небоскребам.

1 ... 57 58 59 60 61 62 63 64 65 ... 71
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?