litbaza книги онлайнДомашняяЭпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности - Несса Кэри

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 ... 96
Перейти на страницу:

Многие годы ученые мечтали о том, что у них появиться возможность клонирование в идеальных условиях. У взрослого млекопитающего, которое они хотели бы клонировать, исследователи брали бы самые доступные клетки. Крошечного соскоба клеток кожи было бы вполне достаточно, а сделать его было бы проще простого. Затем они бы обработали эти клетки в лаборатории, добавляя в них определенные гены, белки или другие химические соединения. Такая обработка принципиально изменила бы будущую судьбу ядер этих клеток. Вместо того чтобы вести себя как ядра клеток кожи, они перенимали бы манеру поведения ядер только что оплодотворенных яйцеклеток. Результат этой лабораторной обработки, таким образом, был бы аналогичен переносу ядер взрослых клеток в оплодотворенные яйцеклетки, из которых предварительно были удалены собственные ядра. Прелесть этой гипотетической методики заключается в том, что мы могли бы избавиться от множества сложных и трудоемких действий, требующих высочайшего уровня технического оснащения и мастерства при работе с крошечными клетками. Эта методика стала бы простой и доступной техникой, позволяющей применять ее одновременно на множестве клеток, а не выполнять каждый раз перенос лишь одного-единственного ядра.

Конечно, нам все еще предстояло бы найти способ доставки этих клеток в суррогатную мать, и это оставалось бы единственной задачей, требующей решения, если мы хотим создавать полноценных живых существ. Отчасти именно это и является нашей целью — дублировать племенных быков, например, или жеребцов, однако если говорить о воссоздании человека, то к такой перспективе большинство разумных людей относятся негативно. Более того, клонирование человека (репродуктивное клонирование) запрещено практически во всех странах, располагающих учеными и инфраструктурой для выполнения подобной задачи. Впрочем, на самом деле нам нет никакой нужды заходить настолько далеко и размышлять о перспективах клонирования человека, чтобы обосновать пользу, которую получит человечество от клонирования. Все, что нам нужно, это клетки, обладающие потенциалом превращаться в клетки других типов. Такого рода клетки называются стволовыми, и, образно говоря, они располагаются около вершины эпигенетического ландшафта Уоддингтона. Причина, по которой мы нуждаемся в таких клетках, объясняется природой заболеваний, составляющих одну из главных проблем нашей развитой цивилизации.

В богатых регионах нашей планеты болезни, убивающие наибольшее число людей, являются хроническими. Для развития им требуется продолжительное время, и часто столь же неспешно они убивают нас, когда принимаются за свое черное дело. Возьмем для примера сердечные заболевания — у человека, пережившего первый сердечный приступ, весьма незначительны шансы на то, что его сердце полностью восстановится и снова будет совершенно здоровым. Во время приступа некоторое количество клеток сердечной мышцы (кардиомиоциты) могут испытать кислородное голодание и погибнуть. На первый взгляд, это не должно представлять для нас большой проблемы, так как сердце наверняка может воссоздать новые клетки взамен утраченных, разве нет? В конце концов, мы ведь сдаем кровь, и наш костный мозг после этого производит больше красных кровяных телец. Точно так же, мы должны нанести ну уж очень большой вред собственной печени, чтобы она утратила способность восстанавливаться, «ремонтируя» сама себя. Но с сердцем дело обстоит несколько иначе. Кардиомиоциты принадлежат к так называемым «окончательно дифференцированным» клеткам — они скатились к самому подножию холма Уоддингтона и прочно застряли в отведенной им ложбине. В отличие от костного мозга или печени, сердце не располагает доступными запасами менее специализированных клеток (кардиальных стволовых клеток), которые могли бы превратиться в новые кардиомиоциты. Соответственно, долгосрочная проблема, вызванная сердечным приступом, состоит в том, что наш организм не способен создавать новые клетки сердечной мышцы. Организм делает единственное, что в его силах, заменяя погибшие кардиомиоциты соединительной тканью, и сердце никогда уже не бьется точно так, как билось прежде.

Подобные явления происходят при очень многих заболеваниях: синтезирующие клетки, секретирующие инсулин, разрушаются, когда у подростка развивается диабет 1 типа, клетки мозга погибают при болезни Альцгеймера, клетки ткани, из которых состоят хрящи, разрушаются при остеоартрите, и этот список можно продолжать бесконечно. Как было бы здорово, если бы мы могли заменять их новыми клетками, полностью идентичными нашим собственным. В этом случае мы могли бы навсегда забыть об отторжении тканей, с которым часто приходится сталкиваться при трансплантации органов, или об отсутствии так нужных нам доноров. Использование стволовых клеток таким образом называется терапевтическим клонированием; под ним мы подразумеваем создание клеток, идентичных клеткам конкретного больного, для лечения его заболевания.

Сорок с лишним лет мы знали, что теоретически это возможно. Работы Джона Гердона и его многочисленных последователей продемонстрировали, что взрослые клетки хранят в себе информацию обо всех клетках организма, и нам остается лишь найти эффективный способ извлечения ее. Джон Гердон брал ядра клеток взрослых лягушек, помещал их в яйцеклетки и закатывал эти ядра на самую вершину ландшафта Уоддингтона, создавая тем самым новых животных. Взрослые ядра оказывались — и это очень важное определение — перепрограммированными. Иэн Вилмут и Кит Кэмпбелл практически то же самое проделали с овцой. Важнейший общий признак, объединяющий эти работы, заключался в том, что в обоих случаях перепрограммирование срабатывало лишь тогда, когда взрослое ядро помещалось в неоплодотворенную яйцеклетку. Именно яйцеклетке была отведена в этом процессе главная роль. Мы не сможем клонировать живое существо, поместив взрослое ядро в клетку какого-либо другого типа.

Почему?

Чтобы разобраться в этом, нам придется сделать небольшое отступление и поговорить о биологии клетки. В ядре содержится подавляющее большинство ДНК и генов, которыми мы закодированы, это чертеж, по которому мы созданы. Очень незначительная часть ДНК располагается не в ядре — она находится в крошечных структурах, называемых митохондриями, но в данном случае это ничуть не должно нас беспокоить. Когда мы впервые знакомились с понятием клетки в школе, у большинства из нас складывалось впечатление, что самое главное и важное в ней — это ядро, тогда как все прочее, а именно цитоплазма, не более чем мешочек с жидкостью, пользы от которого не так уж и много. Трудно представить себе что-либо, столь же далекое от истины, и особенно, если речь идет о яйцеклетке, ибо и лягушки, и Долли научили нас тому, что цитоплазма в яйцеклетке играет ключевую роль. Что-то, содержащееся в этой яйцеклеточной цитоплазме, активно перепрограммировало взрослые ядра, помещенные в нее экспериментаторами. Эти неизвестные факторы откатили ядро со дна одного из уоддингтоновских желобов на самую вершину его ландшафта.

Никто толком не понимал, каким образом цитоплазме яйцеклетки удавалось преобразовывать взрослые ядра в ядра, присущие зиготам. Оставалось лишь предполагать, что, чем бы это ни было, оно должно быть невероятно сложным и запутанным для анализа. Часто в науке случается так, что действительно большие вопросы, получить ответы на которые не представляется возможным, содержат в себе ряд меньших вопросов, поддающихся осмыслению. Поэтому несколько лабораторий занялись решением концептуально более простых, но технически не менее сложных задач.

1 ... 4 5 6 7 8 9 10 11 12 ... 96
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?