litbaza книги онлайнРазная литератураСолнечные элементы - Марк Михайлович Колтун

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 5 6 7 8 9 10 11 12 13 ... 50
Перейти на страницу:

4–2,05 × 1019;

5–1,27 × 1019;

6–7,4 × 1018;

7–1,5 × 1020;

8–3,2 × 1019;

9–1,7 × 1019 см-3

Рис. 2.3. Зависимости концентрации свободных носителей заряда от длины волны плазменного минимума спектрального отражения

1 — для p-Si; 2 — для n-Si; точки — эксперимент

Поглощение света свободными носителями увеличивается с ростом длины волны, а повышение k приводит к возрастанию коэффициента отражения. Таким образом, спектральная зависимость коэффициента отражения легированных полупроводников должна проходить через минимум, что и наблюдается в эксперименте (см, рис. 2.2). Поляризуемость χc полупроводникового вещества пропорциональна произведению Nλ2. G увеличением концентрации свободных носителей N то же значение поляризуемости (в частности, ∣χc∣, при котором n≃1) может достигаться при меньших λ. Именно поэтому при повышении концентрации носителей спектральное положение rmin сдвигается в коротковолновую область, причем значение rmin при этом уменьшается, поскольку падает k.

Эта особенность спектров отражения легированных полупроводников в инфракрасной области может быть положена в основу простого оптического метода определения концентрации носителей N из спектров отражения. Экспериментальные зависимости спектрального положения длины волны минимума отражения для электронного сильнолегированного кремния n-типа (λn-s1) и дырочного p-типа (λp-s1) от концентрации носителей представлена на рис. 2.3. При этом концентрация носителей в эталонных образцах определялась по измерению слоевого сопротивления четырехзондовым методом с использованием известных эталонных кривых, связывающих удельное сопротивление р- и n-кремния с концентрацией свободных носителей. Недостатком данного метода является сравнительно невысокая точность установления спектрального положения длины волны минимума отражения для слаболегированных полупроводников.

Более сложные и точные методики определения концентрации, подвижности и эффективной массы свободных носителей заряда по коэффициентам отражения легированных полупроводников в инфракрасной области спектра детально описаны в ряде работ. В некоторых из них измеренные зависимости отражения сравниваются с эталонными кривыми в весьма широком спектральном диапазоне — от 1 до 50 мкм. Исследование инфракрасных спектров отражения от поверхности полупроводников дает возможность получить информацию не только об электрофизических свойствах кристаллов, но и о состоянии их поверхности, качестве химической и механической обработки, когда глубина нарушений поверхности составляет от 1 до 50 мкм и соизмерима с длиной волны инфракрасного излучения, используемого для измерений. Это удается сделать несмотря на то, что из-за трудностей регистрации суммарного отражения и его диффузной составляющей в инфракрасной области измеряется, как правило, лишь зеркальная составляющая коэффициента отражения и ее температурная зависимость.

Оптические исследования тонких легированных слоев кремния и других полупроводников было бы значительно легче и точнее выполнять с помощью излучения, которое сильно поглощается материалом полупроводника. Таким, например, является ультрафиолетовое излучение с длиной волны 0,2–0,4 мкм, почти полностью поглощаемое слоями кремния толщиной всего 0,05—0,1 мкм. Однако изменение концентрации свободных носителей заряда в полупроводнике в очень широких пределах практически не влияет на его оптические свойства в коротковолновой области спектра.

Спектры отражения в ультрафиолетовой области помогли выполнить фундаментальные исследования для физики твердого тела — установить особенности зонной структуры полупроводников, подтвердив выводы теории. Характерные для многих полупроводниковых материалов всплески отражения объясняются резким ростом показателя поглощения, что вызывается межзонными переходами при большой ширине запрещенной зоны в тех областях зависимости E от k, где k ≠0.

C помощью измерения коэффициента зеркального отражения в ультрафиолетовой области спектра также удается весьма тонко контролировать качество механической и химической полировки поверхности полупроводниковых кристаллов, поскольку коэффициент отражения в этой области спектра заметно зависит от глубины остающихся после полировки нарушений на поверхности кремния и арсенида галлия. Только после того, как глубина нарушений в результате дополнительной полировки становится меньше длины волны ультрафиолетового (0,2–0,4 мкм) и видимого (0,4–0,75 мкм) излучений, использованных при измерениях, коэффициент отражения в этих областях спектра перестает изменяться.

Высокой эффективности оптического контроля способствует наличие пиков отражения, имеющихся у кремния и арсенида галлия в ультрафиолетовой области спектра. Например, контроль за состоянием поверхности кремния лучше вести при длине волны 0,28 мкм, где коэффициент отражения хорошо отполированного кремния достигает 70 %. Для увеличения различия между коэффициентами отражения пластин с разной обработкой поверхности полезно воспользоваться прибором для наблюдения многократного отражения ультрафиолетового излучения от набора пластин с одинаковой обработкой поверхности. В этом же приборе другой набор хорошо

1 ... 5 6 7 8 9 10 11 12 13 ... 50
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?