Шрифт:
Интервал:
Закладка:
Эксперименты с мутировавшими версиями эпигенетических ферментов показали, что изменения гистоновых модификаций на гене FLC имеют принципиальное значение для контролирования реакции на цветение. Например, ген под названием SDG27 добавляет метиловые группы к лизиновой аминокислоте в позиции 4 на гистоне H3, то есть этот ген является эпигенетическим кодировщиком. Это метилирование связано с экспрессией активного гена. В лабораторных условиях ген SDG27 может быть подвергнут мутации, в результате чего он перестанет кодировать активный белок. Растения с этой мутацией имеют меньше таких активных гистоновых модификаций на промоторе гена FLC. Они вырабатывают меньше белка FLC и потому не столь успешно репрессируют гены, инициирующие цветение. Растения с мутировавшим геном SDG27 зацветают раньше, нежели нормальные растения[276]. Это свидетельствует о том, что эпигенетические модификации на промоторе гена FLC не просто отражают уровни активности гена, а на самом деле меняют его экспрессию. Именно эти модификации и вызывают изменение экспрессии.
Холодная погода стимулирует в растениях белок под названием VIN3. Этот белок может связываться с промотором FLC. VIN3 принадлежит к типу белков, которые называются реконструкторами хроматина. Они способы менять степень закрученности хроматина. Когда VIN3 связывается с промотором FLC, он меняет локальную структуру хроматина, делая ее более доступной для других белков. Часто подобное раскрытие хроматина приводит к повышению экспрессии генов. Однако в данном случае VIN3 притягивает еще один фермент, который может добавлять метиловые группы к гистоновым белкам. Но именно этот фермент добавляет метиловые группы к лизиновой аминокислоте в позиции 27 на гистоне H3. Эта модификация репрессирует экспрессию гена и является одним из наиболее эффективных способов, которыми пользуется клетка растения для подавления гена FLC[277][278].
По-прежнему неизученным остается вопрос о том, как холодная погода вызывает эпигенетические изменения конкретно на гене FLC. Какой механизм обеспечивает это явление? Нам все еще неизвестны многие детали, но на одну из стадий этого процесса уже пролит свет. После наступления холодной погоды клетки Arabidopsis thaliana вырабатывают длинную РНК, которая не кодирует белки. Эта РНК называется COLD AIR. Не кодирующая белки РНК COLDAIR локализована исключительно на гене FLC, где она связывается с ферментным комплексом, который создает важную репрессивную метку на позиции 27 гистона H3. Таким образом COLDAIR действует на ферментный комплекс как программирующий механизм [279].
Когда у Arabidopsis thaliana зарождаются новые семена, репрессивные гистоновые метки на гене FLC удаляются. Они заменяются активирующими хроматин модификациями, в результате чего при созревании семена происходит активация гена FLC, подавляющего цветения до тех пор, пока новые растения не переживут зимний период.
Из этих данных мы вправе сделать вывод, что цветковые растения определенно пользуются некоторыми из тех же эпигенетических приемов, которые присущи многим клеткам животных. В числе этих приемов мы можем назвать модификации гистоновых белков и использование длинной некодирующей РНК для программирования этих модификаций. Действительно, клетки животных и растений прибегают к этим инструментам ради различных конечных целей — вспомните плотника и хирурга-ортопеда из предыдущей главы, — но все это служит явным свидетельством наличия у растений и животных общего предка и одного базового набора инструментов.
Эпигенетическое сходство между растениями и животными этим не ограничивается. Как и животные, растения также продуцируют тысячи разнообразных маленьких молекул РНК. Они не кодируют белки, а вместо этого подавляют гены. Именно ученые, работающие с растениями, первыми выяснили, что эти очень маленькие молекулы РНК способны перемещаться из одной клетки в другую, подавляя экспрессию генов, встречающихся на их пути[280][281]. Благодаря этому эпигенетическая реакция на раздражитель распространяется от своей единственной начальной локации до самых отдаленных участков организма.
Злак-самоубийца
Исследования Arabidopsis thaliana показали, что растения пользуются эпигенетическими модификациями для регуляции тысяч генов[282]. Это регуляция, вероятно, служит тем же целям, что и в клетках животных. Оно помогает клеткам сохранять необходимые, но краткосрочные реакции на раздражители окружающей среды, а также блокируют дифференцированные клетки в постоянных схемах экспрессии специфических генов. Благодаря действию эпигенетических механизмов у людей не растут зубы на глазных яблоках, а у растений листья не появляются прямо из корней.
Цветковые растения обладают общим с млекопитающими характерным эпигенетическим феноменом, который не встречается ни у каких более представителей животного мира. Цветковые растения являются единственными известными нам организмами, за исключением плацентарных животных, у которых присутствуют импринтинговые гены. Импринтингом, как мы узнали из главы 8, называется процесс, при котором схема экспрессии гена зависит от того, был ли он унаследован от матери или от отца.
На первый взгляд это сходство между цветковыми растениями и млекопитающими представляется довольно странным. Однако у нас и наших цветущих родственников есть одна очень любопытная общая особенность. У всех высших млекопитающих из оплодотворенной зиготы возникает как эмбрион, так и плацента. Плацента питает развивающийся эмбрион, но в конечном итоге не становится частью новой особи. Нечто очень похожее имеет место, когда происходит оплодотворение и у цветковых растений. Этот процесс несколько более сложен, но в результате его оплодотворенное семя содержит в себе эмбрион и вспомогательную ткань, которая называется эндоспермом. Строение семени показано на рисунке 15.2.
Рис. 15.2. Основные анатомические компоненты семени. Эндосперм питает относительно маленький эмбрион, который разовьется в новое растение, в значительной степени подобно тому, как плацента вскармливает эмбрионы млекопитающих