Шрифт:
Интервал:
Закладка:
Эндосперм питает эмбрион растения так же, как плацента питает эмбрион млекопитающего. Он обеспечивает его развитие и созревание, но не оказывает какого-либо генетического влияния на следующее поколение. Наличие любой вспомогательной ткани во время развития, будь то плацента или эндосперм, как представляется, наделяет следующее поколение механизмом импринтингового контроля над экспрессией выбранной группы генов.
На самом деле, в эндосперме семени происходят чрезвычайно сложные процессы. Как и в геномах большинства животных, в геномах цветковых растений присутствуют ретротранспозоны. Их обычно называют МГЭ — мобильными генетическими элементами. Это повторяющиеся элементы, которые не кодируют белки, но могут вызвать катастрофу, если будут активированы. Главная причина этого в том, что они способны перемещаться по геному и нарушать экспрессию генов.
Обычно эти МГЭ репрессируются в очень высокой степени, но в эндосперме эти последовательности активируются. Клетки эндосперма создают из этих МГЭ маленькие молекулы РНК. Эти маленькие РНК перемещаются из эндосперма в эмбрион. В геноме эмбриона они обнаруживают МГЭ, имеющие ту же, что и у них, последовательность. Затем эти МГЭ маленьких молекул РНК, по-видимому, восстанавливают механизм, который перманентно подавляет эти потенциально опасные элементы генома. Опасность для генома эндосперма, возникающая из-за активации МГЭ, очень высока. Но так как эндосперм не влияет на следующее поколение генетически, он может решиться на совершение самоубийства во имя блага будущего растения[283][284][285][286].
Хотя и млекопитающие, и цветковые растения осуществляют импринтинг, они, как представляется, пользуются для этого несколько различными механизмами. Млекопитающие подавляют соответствующую копию импринтингового гена с помощью метилирования ДНК. Растения получают только ту копию отцовского гена, которая несет на себе метилирование ДНК. Однако репрессируется далеко не всегда именно эта метилированная копия гена[287]. При импринтинге растений, таким образом, метилирование ДНК сообщает клетке, каким образом ген был унаследован, а не как этот ген должен экспрессироваться.
Существуют некоторые фундаментальные аспекты метилирования ДНК, которые довольно схожи у растений и животных. Геномы растений кодируют активные ферменты метилтрансферазы ДНК, а также белки, которые могут «прочитывать» метилированную ДНК. Подобно первичным половым клеткам млекопитающих, определенные клетки растений способны активно удалять метилирование с ДНК. Нам даже известно, какие именно ферменты отвечают у растений за эту реакцию[288]. Один из них называется DEMETER (Деметра) в честь матери Персефоны из древнегреческих мифов. Деметра была покровительницей урожая, и именно благодаря сделке, заключенной ею с Гадесом, повелителем Подземного мира, человечество получило смену времен года.
Но метилирование ДНК является также и аспектом эпигенетики, и здесь очевидны явные различия в том, как растения и высшие животные пользуются одной и той же базовой системой. Одним из наиболее выраженных различий в этом процесс является то, что растения метилируют не только мотивы CpG (когда за цитозином следует гуанин). Хотя эти мотивы и являются наиболее распространенной последовательностью, на которую нацелены их метилтрансферазы ДНК, растения также метилируют цитозин, за которым следует практически любое другое основание[289].
Метилирование ДНК у растений, как и у млекопитающих, часто сосредоточено вокруг неэкспрессируемых повторяющихся элементов. Но разница станет более чем очевидной, если мы исследуем схему метилирования ДНК на экспрессируемых генах. У почти 5 процентов экспрессируемых генов растений метилирование ДНК на промоторах детектируется, но свыше 30 процентов ДНК метилировано в областях, кодирующих аминокислоты, в так называемом теле генов. Гены с метилированием участков тела имеют тенденцию экспрессироваться в самых разнообразных тканях и экспрессируются в этих тканях от умеренного до высокого уровня.[290]
Высокие уровни метилирования ДНК на повторяющихся элементах у растений очень подобны схеме повторяющихся элементов в хроматине высших животных, таких как млекопитающие. И напротив, метилирование тел активно экспрессируемых генов в значительно большей степени похоже на то, что наблюдается у медоносных пчел (которые не метилируют повторяющиеся элементы). Это не означает, что растения являют собой некий причудливый эпигенетический гибрид насекомых и млекопитающих. Это только лишь заставляет предположить, что эволюция располагает ограниченным набором сырья и высокой избирательностью того, как им пользоваться.
Трудно что-либо предвидеть, а уж особенно будущее.
Одна из наиболее примечательных особенностей эпигенетики заключена в том факте, что эта отрасль науки в некотором роде вполне доступна и неспециалистам. Конечно, не у всех из нас есть доступ к самому современному экспериментальному оборудованию, и потому не каждый сумеет с точностью определить, какие изменения хроматина лежат в основе тех или иных эпигенетических явлений. Но любой из нас в состоянии наблюдать окружающий мир и делать прогнозы на основании собственных наблюдений. Все, что нам для этого требуется, это оглядеться вокруг и определить, отвечает ли какой-либо феномен двум важнейшим критериям эпигенетики. Благодаря этому мы получим возможность увидеть весь мир, включая и человека, в совершенно новом свете. Эти два критерия — те самые, к которым мы то и дело возвращались на протяжении всей нашей книги. Любое явление испытывает на себе влияние эпигенетических изменений в ДНК и соответствующих белках в том случае, если удовлетворяются одно или оба из следующих условий.
1. Два организма генетически идентичны, но фенотипически различны.
2. Организм продолжает находиться под влиянием некого события, хотя оно произошло много лет тому назад.
Разумеется, нам ни в коем случае не следует игнорировать и фильтры здравого смысла. Если кто-то потерял ногу в результате несчастного случая, то тот факт, что и через двадцать лет этот человек по-прежнему остается без ноги, отнюдь не означает, что виной тому некие эпигенетические механизмы. С другой стороны, этот человек может продолжать испытывать ощущение, будто у него обе ноги. Такой синдром фантомной конечности вполне может быть вызван запрограммированными схемами экспрессии генов в центральной нервной системе, которые частично поддерживаются эпигенетическими модификациями.