litbaza книги онлайнРазная литератураОхота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 115 116 117 118 119 120 121 122 123 ... 482
Перейти на страницу:
в проводнике. Например, скорость движения электронов в металлическом проводнике составляет доли миллиметра в секунду (величина этой скорости зависит от величины разности потенциалов), а скорость распространения электрического тока — порядка 300 000 км/с.

Однако в случае, когда проводник не изолирован или изолирован плохо, скорость распространения сигнала сильно падает из-за утечек. Мембраны нейронов содержат молекулярные механизмы, отвечающие за регуляцию разности потенциалов между внутренним пространством клеток и внешней средой. Это ионные насосы (помпы) и ионные каналы.

Ионные насосы — специальные белки, которые обеспечивают активный перенос ионов из области с меньшей концентрацией в область с большей концентрацией за счёт энергии гидролиза аденозинтрифосфорной кислоты (АТФ). Именно в результате работы ионных насосов создаётся и поддерживается разность концентрации ионов по обе стороны мембраны (так называемый трансмембранный ионный градиент).

Ионные каналы — белки (или белковые комплексы), которые обеспечивают пассивный транспорт ионов из области с большей концентрацией в область с меньшей концентрацией как раз за счёт разности концентраций. Ионные каналы делятся на селективные и неселективные. Последние всегда находятся в открытом состоянии и пропускают все типы ионов (при этом их проницаемость для положительно заряженных ионов кальция значительно выше, чем для других ионов). Селективные каналы пропускают только один вид ионов — для каждого вида ионов существует свой вид каналов. При этом селективные каналы могут находиться в одном из трёх состояний: активированном, инактивированном и закрытом[1050].

Кроме того, в зависимости от способа управления, ионные каналы подразделяются на потенциал-зависимые (потенциал-управляемые), лиганд-зависимые (лиганд-управляемые), стимул-управляемые, неуправляемые, а также некоторые другие, на которых мы не будем заострять особого внимания.

Потенциал-зависимые ионные каналы открываются и закрываются в ответ на изменение мембранного потенциала. Лиганд-зависимые каналы открываются, когда вещество-нейромедиатор, связываясь с их наружными рецепторными участками в синаптической щели, меняет их конформацию (т. е. пространственное расположение атомов в молекуле). Стимул-управляемые каналы открываются ввиду действия какого-либо стимула и бывают механочувствительные, протон-активируемые, температурно-чувствительные и так далее. Что касается неуправляемых каналов, то они, как можно догадаться из их названия, постоянно находятся в открытом состоянии[1051], [1052].

Однако даже и в изолированном миелином нервном волокне электрический сигнал постепенно затухает. Поэтому, чтобы компенсировать этот эффект, и требуются упомянутые ранее перехваты Ранвье. Они выполняют роль своеобразных «трансформаторных подстанций», усиливающих сигнал до необходимого уровня. Таким образом, электрический импульс в миелинизированных волокнах перескакивает от одного перехвата к другому, чтобы получить в нём очередное подкрепление. Такой механизм хорошо объясняет экспериментальные результаты, полученные Эдрианом, Като и их коллегами.

Возможность быстрой передачи нервных сигналов по миелинизированным нервным волокнам стала важным эволюционным преимуществом позвоночных организмов, увеличив скорость их мышечной реакции на внешние раздражители и позволив им увеличиваться в размерах. В наши дни учёные продолжают изучение механизмов действия перехватов Ранвье. Например, исследуются механизмы, связанные с влиянием на их функции инфракрасного излучения[1053], [1054]. Не исключено, что дальнейшие исследования помогут ещё лучше уточнить детали устройства тонкой биохимической и биофизической «машинерии».

Теперь можно наконец и рассмотреть модель Ходжкина — Хаксли. Она представляет собой систему нелинейных дифференциальных уравнений, которая приближённо описывает электрические характеристики возбуждаемых клеток. Модель сопоставляет каждому компоненту клетки его физический аналог, рассматривая его в качестве элемента электрической цепи.

Рис. 83. Электрическая схема, соответствующая модели Ходжкина — Хаксли

Внутреннему липидному слою клеточной мембраны соответствует электроёмкость Cm. Потенциал-зависимые ионные каналы обеспечивают нелинейную электропроводность gn (где n — отдельный вид ионных каналов), зависящую от величины потенциала и времени. Эта часть системы, как было обнаружено в более поздних исследованиях, базируется на белковых молекулах, образующих потенциал-зависимые ионные каналы. Вероятность открытия канала зависит от электрического потенциала (или электрического напряжения) мембраны клетки. Как мы уже знаем, каналы мембранных пор обеспечивают пассивный переток ионов в направлении области с их меньшей концентрацией. Участок цепи, соответствующий электропроводности gL, отвечает как раз за возникающий в результате этого электрический ток, называемый «током утечки» (L от англ. leak — течь, утечка). Разность концентрации ионов, ввиду которой ионы перемещаются через мембранные каналы, показана на схеме при помощи источников напряжения с электродвижущей силой En и EL. Ионные насосы соответствуют источникам тока Ip[1055].

Модель Ходжкина — Хаксли считается одним из величайших достижений биофизики XX в. Со временем она подверглась модификациям и улучшениям. На базе экспериментальных данных в модель были добавлены новые виды ионных каналов и транспортёров. Модель была модифицирована с целью её согласования с теорией переходного состояния, что привело к созданию термодинамических моделей Ходжкина — Хаксли[1056]. Создание стохастических (т. е. связанных со случайностью, от греческого слова στοχαστικός — умеющий угадывать) моделей поведения ионных каналов привело к появлению стохастических гибридных систем, в которых детерминистические описания непрерывной динамики сочетаются со скачкообразными марковскими процессами[1057], а также модели Пуассона — Нернста — Планка (PNP) для моделирования процессов ионного обмена в каналах. Дело в том, что ионные каналы — это весьма сложные приспособления, для моделирования которых необходимо учитывать самые разные физические и химические эффекты. Здесь есть место как для электрохимии, так и для гидродинамики. Через каждый канал может проходить от миллиона до 100 млн ионов в секунду, при этом на открытие или закрытие канала уходит всего порядка миллисекунды, и оно может происходить под влиянием разных механизмов, а на активность работы канала оказывает влияние несколько модулирующих факторов[1058], [1059]. Именно поэтому модели, учитывающие все особенности работы ионных каналов, являются весьма сложными.

Учёными было разработано несколько упрощённых моделей нейронов (таких как модель Фитцхью — Нагумо[1060] или модель Ижикевича[1061]), облегчающих эффективное крупномасштабное моделирование их групп. Кроме того, современные модели обычно подразумевают наличие разветвлённой структуры аксонов и дендритов[1062].

4.2.6 Мышонок Гарольд и его увлекательная жизнь после смерти

В наши дни нейробиологи обладают весьма изощрёнными инструментами для воссоздания так называемых коннектóмов — карт связей нейронов в нервной ткани. Один из наиболее интересных проектов в этой области осуществляется учёными из лаборатории Себастьяна Сеунга в Принстонском университете, а ранее — в MIT (Massachusetts Institute of Technology, Массачусетский технологический институт). Ближайшей целью проекта является создание карты связей нейронов сетчатки мышонка по имени Гарольд. Сетчатка — это часть мозга, осуществляющая первичную обработку зрительной информации. Она была выбрана в качестве модельного объекта для обкатки технологий, необходимых для достижения долгосрочной научной цели — полного описания коннектома мозга человека.

По всей видимости, в силу того, что при жизни Гарольд

1 ... 115 116 117 118 119 120 121 122 123 ... 482
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?