litbaza книги онлайнРазная литератураОхота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 173 174 175 176 177 178 179 180 181 ... 482
Перейти на страницу:
о том, что стоимость фабрик по производству микросхем удваивается каждые четыре года. Сам Мур называл эту закономерность «законом Рока» — в честь американского бизнесмена и одного из первых инвесторов Intel Артура Рока, который обратил внимание на эту закономерность.

Впрочем, современные 10- и 7-нанометровые микросхемы от Samsung и TSMC находятся всё ещё в непосредственной близости от кривой, заданной скорректированной в 1975 г. версией закона. В качестве очередной даты запланированной смерти закона Мура многие исследователи (включая самого Мура) в наши дни называют 2025 год. Между тем в декабре 2022 г. компания TSMC уже начала выпуск схем по 3-нанометровой технологии[1545], а IBM уже анонсировала начало производства интегральных микросхем на основе 2-нанометровой технологии в четвёртом квартале 2024 г.[1546] Возможно, пора ввести какую-нибудь универсальную константу: например, вне зависимости от текущей даты прогнозы об окончании действия закона Мура составляют 5–7 лет от сегодняшнего дня.

Популярность закона Мура привела к появлению множества сходных утверждений разной степени серьёзности и актуальности. Закон Кека (Keck’s law) утверждает, что скорость передачи данных по оптоволокну растёт экспоненциально и по более крутой экспоненте, чем в законе Мура. Закон Мэкрона (Machrone’s law) гласит: персональный компьютер, который вы хотите купить, всегда стоит 5000 долларов. Согласно закону Вирта (Wirth’s law) программное обеспечение замедляется быстрее, чем ускоряется аппаратное, и так далее[1547].

В 1983 г. журнал «В мире науки» писал: «Если бы авиапромышленность в последние 25 лет развивалась столь же стремительно, как промышленность средств вычислительной техники, то сейчас самолёт Boeing 767 стоил бы 500 долл. и совершал облёт земного шара за 20 минут, затрачивая при этом пять галлонов (≈19 л) топлива. Приведённые цифры весьма точно отражают снижение стоимости, рост быстродействия и повышение экономичности ЭВМ».

Итак, закон Мура — это эмпирическое наблюдение относительно одного из параметров интегральных схем. Во-первых, оно не имеет прямого отношения к производительности машин, во-вторых, не является законом в том смысле, в котором законом является первый закон термодинамики или закон сохранения энергии. Количество элементов интегральных схем не обязано и дальше увеличиваться теми же темпами. Своё отношение к физической стороне вопроса Мур высказал в 2003 г., опубликовав работу под названием «Ни одна экспонента не вечна: но „вечность“ можно отсрочить!» (No Exponential Is Forever: But We Can Delay “Forever”!), в которой среди прочего указал на то, что рост физических величин по экспоненте в течение длительного временно́го периода невозможен. В 2007 г. Мур выразился ещё более конкретно, указав на атомарную природу вещества и ограничение скорости передачи сигнала скоростью света как на фундаментальные физические лимиты, которые рано или поздно встанут на пути совершенствования вычислительной техники.

5.3.2 Пределы роста

Достаточно часто динамику роста чего-либо, например параметров какой-либо развивающейся технологии или общественного явления, характеризуют как экспоненциальную. Однако в действительности, в силу существования фундаментальных ограничений, реальные кривые роста обычно являются S-образными. По мере приближения величины к фундаментальному лимиту рост замедляется, асимптотически приближаясь к своей границе. Логистическая функция (напомним, что это s(x) = 1 / (1 + ekx), где k — некоторый масштабный коэффициент, e — основание натурального логарифма), используемая в качестве функции активации в нейронных сетях, является хорошим примером подобной динамики[1548], [1549].

Если вместо динамики показателя, используемого в законе Мура, рассматривать динамику вычислительных характеристик машин — скажем, способность машины фиксированной массы выполнять в единицу времени некоторое количество стандартных операций, например арифметических действий с числами с плавающей точкой или базовых операций двоичной логики, то физические лимиты роста становятся более определёнными. Ограничение, на которое указал Мур, носит название «предела Бремерманна» — в честь американского физика немецкого происхождения Ханса-Йоахима Бремерманна, который ввёл этот предел в научный оборот в начале 1960-х гг. Данный предел скорости вычислений автономной вычислительной системы в материальной вселенной возникает вследствие действия эйнштейновского принципа эквивалентности массы и энергии, а также принципа неопределённости Гейзенберга, а его значение несложно рассчитать по формуле c2/ħ ≈ ≈ 1,36 × 1050 бит в секунду на килограмм (здесь c — скорость света, ħ — постоянная Планка).

Развитие идеи квантовых вычислений привело на границе тысячелетий к переосмыслению лимита Бремерманна. Сегодня фундаментальный предел производительности вычислительного устройства интерпретируется как максимальная скорость, с которой система с энергетическим разбросом {displaystyle Delta E}ΔΔE может трансформироваться из одного различимого состояния в другое: Δt = πħ/2ΔE. Это соотношение носит название «теорема Марголуса — Левитина» — в честь открывших его Нормана Марголуса и Льва Левитина. Данная теорема обобщает лимит Бремерманна на случай с квантовыми машинами, определяя минимальное время, чтобы перейти из одного состояния в другое, ортогональное начальному, для квантовой системы со средней энергией Е. Таким образом, скорость вычислений не может быть больше, чем 6 × 1033 двоичных операций на один джоуль энергии.

Впрочем, эти пределы довольно далеко отстоят от возможностей современных технологий. Прогресс в этой области можно оценивать по рейтингу Green500, обновляющемуся раз в два года. Этот рейтинг представляет собой список 500 наиболее производительных суперкомпьютеров в мире, отсортированный по энергоэффективности производимых ими вычислений. На июнь 2023 г. первое место в нём занимает машина Henri, производящая около 65 млрд операций с плавающей запятой в секунду на один ватт мощности[1550]. Обычно под операцией над числами с плавающей запятой понимают операции с 32-битными представлениями чисел, а один ватт равен одной джоуль-секунде. Таким образом, MN-3 производит 32 × 65 × 109 ≈ 2,1 × 1012 двоичных операций на один джоуль энергии. За десять последних лет этот показатель вырос в двадцать раз, то есть более чем на порядок[1551], но до достижения предела остаётся ещё около 21 порядка.

Более неприятный сюрприз подготовила разработчикам вычислительных машин термодинамика. Дело в том, что в соответствии с принципом Ландауэра в любой вычислительной системе, независимо от её физической реализации, при потере одного бита информации выделяется теплота в количестве по крайней мере kBT ln 2, где kB — константа Больцмана, T — абсолютная температура вычислительной системы в кельвинах (мы же не хотим, чтобы наш компьютер расплавился или даже испарился в процессе работы). Выражением Шеннона — фон Неймана — Ландауэра называют минимальную энергию Ebit > ESNL = kBT ln 2. При T = 300K энергия ESNL ≈ 0,018 эВ ≈ 2,9 × 10−21 Дж. На 2006 г. транзисторы электронных вычислительных машин рассеивали примерно в 10 000 раз больше тепла, с трендом уменьшения на порядок за десятилетие[1552]. Исходя из графика в том же источнике, современная технология 7-нанометровых процессоров соответствует рассеиванию примерно в 400 раз больше лимита. Таким образом, лимит, проистекающий из принципа Ландауэра,

1 ... 173 174 175 176 177 178 179 180 181 ... 482
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?