litbaza книги онлайнРазная литератураОхота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 182 183 184 185 186 187 188 189 190 ... 482
Перейти на страницу:
классика нейроморфной инженерии Алана Мюррея и его коллег описывает создание импульсных нейронных сетей на основе СБИС.

Продолжал работу в этой области и Ньюкомб. Например, в 1992 г. в его статье[1663], написанной в соавторстве с Гью Муном и Моной Заглул, описывается СБИС-реализация синаптических весов и суммирования в импульсных нейронах. Одним из важных этапов работы группы Ньюкомба стала публикация в 1994 г. книги[1664] под названием «Исполнение импульсно связанных нейронных сетей в кремнии» (Silicon Implementation of Pulse Coded Neural Networks). Исследования Ньюкомба и его коллег заложили фундамент для будущих инженерных проектов нейроморфных вычислений.

В 1990-е и начале 2000-х гг. свет увидело немало работ, в которых рассматривалось создание экспериментальных нейроморфных микросхем, в том числе предназначенных для решения прикладных задач. Например, в статье Ясухиро Оты и Богдана Виламовски, опубликованной в 2000 г.[1665], предлагается CMOS‑архитектура синхронной импульсной нейронной сети и рассматривается её применение в обработке изображений. Аппаратная конструкция была основана на модели нейрона «интегрировать-и-сработать» с утечками и обеспечивала динамическое связывание синапсов. Впрочем, размеры сетей, реализуемых нейроморфными микросхемами в 1990-е и в начале 2000-х гг., были довольно скромными, а сами микросхемы если и доводились до стадии выполнения «в кремнии», то выпускались обычно крайне малыми сериями, а то и в единичных экземплярах.

Конечно, очень круто изготовить нейроморфный чип[1666], симулирующий работу верхнего двухолмия (Superior colliculus) мозга амбарной совы (сипуха обыкновенная, Tyto alba), но хочется всё-таки увидеть подобный процессор встроенным в какое-нибудь пользовательское устройство, хотя бы в электронный глобус.

Старт программы SyNAPSE в 2008 г. подстегнул новую волну интереса к нейроморфной инженерии. Основными получателями финансирования от DARPA стали HRL Laboratories, IBM и Hewlett-Packard. От IBM исследовательскую группу возглавил Дхармендра Модха, от HRL — Нарьян Шриниваса, от HP — Грегори Снайдер. Компании, в свою очередь, привлекли в качестве субподрядчиков ряд ведущих американских университетов.

5.3.9 Открытие мемристора

Именно в 2008 г. компания Hewlett-Packard (далее — HP) привлекла к себе внимание благодаря заявлению о создании мемристора [memristor] — «недостающего звена» электронной схемотехники.

Теория электронных схем до начала 1970-х гг. вращалась вокруг трёх известных фундаментальных двухполюсных элементов, известных как резистор, конденсатор и катушка индуктивности. Эти элементы отражают отношения между парами четырёх основных электрических величин: заряда, силы тока, напряжения и потока магнитной индукции.

Несложно заметить, что в списке элементов отсутствует такой, который обеспечивал бы связь между зарядом и магнитным потоком. Профессор Леон Чуа из Калифорнийского университета в Беркли в 1971 г. был первым, кто обратил внимание на это недостающее звено, предположив возможность создания четвёртого фундаментального элемента. Этот четвёртый элемент был назван мемристором (не путать с мемистором Уидроу!): от слов memory — память и resistor — резистор. Чуа показал, что переменный мемристор, по сути дела, является резистором с памятью, поскольку его сопротивление меняется в зависимости от прошедшего через него заряда.

В течение многих лет после выхода в свет пионерской работы Чуа исследователи считали, что мемристор является лишь теоретическим конструктом. Конечно, в оригинальной статье Чуа было продемонстрировано устройство, состоящее из операционных усилителей и дискретных нелинейных резисторов, но мало кто надеялся в те годы на то, что этот же принцип может быть воплощён в простом физическом элементе. Громом среди ясного неба стала публикация в Nature исследователей Hewlett-Packard под руководством Ричарда Стэнли Уильямса из лаборатории в Пало-Альто под названием «Найден пропавший мемристор» (The missing memristor found)[1667], объявившая, что физическая модель мемристора создана. Наличие эффекта памяти было продемонстрировано в твердотельном тонкоплёночном двухполюсном устройстве[1668], состоящем из тонкой (50 нм) плёнки диоксида титана, разделяющей два электрода толщиной 5 нм (один изготовлен из титана, второй — из платины). Плёнка диоксида титана имела два слоя, в одном из которых существовал небольшой дефицит атомов кислорода. Отсутствие атома в одном из узлов кристаллической решётки называют «вакансией», а отсутствие атома кислорода соответственно «кислородной вакансией». Кислородные вакансии действуют как носители заряда, поэтому обеднённый слой имеет меньшее сопротивление, чем необеднённый. Приложение электрического поля вызывает дрейф кислородных вакансий, что приводит к смещению границы между слоями. Это изменение можно обратить, изменив направление тока. Таким образом, сопротивление плёнки в целом зависит от заряда, прошедшего через неё в определённом направлении[1669].

Сам по себе эффект изменения сопротивления диоксида титана был первоначально описан в 1960-е гг., однако в те годы не привлёк внимания инженеров.

Не все специалисты согласны с тем, что в 2008 г. команда исследователей HP создала именно мемристор. В конце концов, количество кислородных вакансий в плёнке ограниченно. Устройство будет работать в течение определённого времени как своеобразный «химический конденсатор», пока химическая неоднородность не будет сбалансирована, что приведёт к нарушению основного требования к подлинному мемристору, так называемого «свойства разряда без энергии»[1670]. Есть и другие претензии к «мемристору» на основе диоксида титана (как и к другим существующим устройствам, претендующим на высокое звание мемристора). Впрочем, сам создатель термина «мемристор» Леон Чуа выступил в поддержку своих коллег из HP, предложив относить к мемристорам все «двухполюсные устройства энергонезависимой памяти, основанные на изменении сопротивления <…> независимо от материала устройства и физических механизмов его действия»[1671]. Впрочем, при такой расширительной трактовке понятия к мемристорам можно отнести и мемистор Уидроу, и даже потенциометры с электромоторами, использовавшиеся Розенблаттом. Отечественные остряки из Томской группы и студенческого отделения Института инженеров по электротехнике и радиоэлектронике вообще предлагают называть мемристоры «пизасторами» (по первым буквам в выражении «Поток И ЗАряд», поскольку эти устройства связывают магнитный поток и заряд), а явление, лежащее в его основе, — «пизастансом»: «…гипотетическое устройство было главным образом описано как математическое развлечение. Тридцать лет спустя, старейшина Хулетт-Поцкард Стэн Уильямс и его группа работала над молекулярной электроникой, когда они стали обращать внимание на странное поведение в их устройствах. „Они делали действительно забавные вещи, и мы не могли выяснить, что это за хрень“, — говорит Уильямс. Тогда сотрудник Хулетт-Поцкард Грэг Стукач открыл вновь работу Хуа 1971 г. Уильямс вспоминает: „Он сказал: «Эй, чуваки, я не знаю, что за говно мы получили, но это то, что мы хотели»“. Уильямс потратил несколько лет, читая и перечитывая статьи Хуа. „Это были несколько лет чесания затылка и размышления об этом“. Тогда Уильямс понял, что их босхианская коллекция устройств были действительно пизасторами. Это поражало воображение до самых корней»[1672].

Рис. 116. Фундаментальные двухполюсные элементы электронной схемотехники

По крайней мере, с последним

1 ... 182 183 184 185 186 187 188 189 190 ... 482
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?