Шрифт:
Интервал:
Закладка:
Тем и хорош сторителлинг, он заставляет взглянуть на все с чистого листа.
С 2015 по 2017 годы порталы Import.io[68], rededit[69] и журнал Economist[70] собрали лучшие примеры Data Storytelling за последние два века:
• Картографическая визуализация о вторжении Наполеона в Россию, 29 ноября 1869, подготовленная Шарлем Жозефом Минаром, французским инженером, топографом и автором проектов портов и каналов. Карта включала в себя 6 (!) различных видов данных:
◊ География – реки, города и сражения привязаны к реальным географическим локациям, где они проходили.
◊ Путь движения армии – направление вторжения армии Наполеона в Россию.
◊ Путь отступления армии – детально проработанный путь отступления армии Наполеона после поражения.
◊ Численность войск – количество оставшихся солдат по мере движения армии (каждый миллиметр представляет десять тысяч человек). Поражает размер понесенных потерь. Наполеон вторгся в Россию с армией в 442 000 солдат, дошел до Москвы с численностью уже в 100 000 солдат и бежал из России небольшим полком в 10 000 человек.
Диаграмма эффективности вторжении армии Наполеона в Россию 1812–1813
◦ Температура – в зависимости от продвижения армии, указано снижение температуры.
◦ Время – все данные соотносятся с временной шкалой.
• Круговая диаграмма о количестве смертей в Крымской войне, которую подготовила сестра милосердия и общественная деятельница Великобритании Фроленс Найтингейл. В своих трудах она впервые использовала круговые диаграммы, тем самым став их изобретателем. Она подготовила эти диаграммы, чтобы показать, сколько смертей можно было избежать, если заниматься профилактикой и лечением заболеваний раненных солдат, которые подвергались двойному риску с попаданием в госпитали. На рисунке выделен размер смертности, который наступал от болезней или инфекций уже в госпиталях, куда попадали раненые солдаты. Диаграмма сестры Найтингейл конкретна, наглядна и имеет четкий «call to action», но она не идеальна, как утверждает журнал Economist. Так, каждый из цветных клиньев измеряется из центра, поэтому частично закрывает друг друга (вот только эта книга черно-белая, поэтому советую найти диаграмму в Интернете). В дополнении число смертей не указано, хотя это был относительный размер. Но даже несмотря на это, данная инфографика была включена в отчет комиссии по проблемам здоровья в армии, и оказала положительное воздействие на принимаемые решения.
Диаграмма причин смертности в Армии на Востоке
• Экономические диаграммы и чарты шотландского инженера и основателя графических методов статистики Уильяма Плейфэра. Плейфэр изобрел линейчатый график и гистограммы для представления данных. Ряд его диаграмм отражает торговый баланс для Англии. Он был первым, кто показал размеры и экспорт на одном графике, сформулировав тезис о влиянии сдвига торгового баланса на уровень развития той или иной страны.
Один из самых известных его графиков отражает еженедельную заработную плату хорошего механика. Этим графиком он пытался пояснить связь себестоимости пшеницы и стоимости механистического труда. Один из выводов графика: стоимость пшеницы сегодня стала несоизмеримо мала с переходом к механистическому труду. Использование Плейфэром горизонтальной и вертикальной осей для представления времени и денег стало новшеством для того времени. Он был первым, кто использовал данные не только для того, чтобы информировать, но и для того, чтобы убеждать принимать решения и проводить кампании.
График роста заработной платы хорошего механика
Импорт и экспорт для Дании и Норвегии с 1700 по 1780
• Самые громкие районы Нью-Йорка. В своей статье[71] в январе 2015 в журнале The NewYorker известный аналитик, преподаватель Института Пратта[72] и автор проекта I Quant NY (Я считаю NY), Бен Веллингтон, используя публичные данные, определил худшие для проживания районы Нью-Йорка по уровню шума. Проанализировав за несколько лет все обращения по уровню шума среди жителей мегаполиса, Бен категоризировал все обращения жителей по темам и по географии, определив районы с наиболее высоким уровнем шума. Самым шумным стал район Мидтауна Манхэттена, где среди лидеров раздражения были строительные работы, вечеринки, громкая музыка и громкие разговоры. Статья вызвала большой резонанс в обществе, на что Департамент полиции и Департамент защиты окружающей среды взяли на себя обязательства разработать индивидуальные решения для различных районов города. С наглядным результатом анализа Веллингтона можно ознакомиться здесь:
Не благодарите.
В 1984 Уильям Кливленд и Роберт МакГил, известные исследователи в области статистики, в своей работе «Восприятие графики»[73] (журнал Американской Ассоциации Статистики, № 79 от 1984) выявили, что человек очень плохо интерпретирует ряд объектов и форм, если с их помощью отражается аналитическая информация. Их исследование стало одним из первых, структурирующих подход в восприятии человеком аналитической информации.
Трехмерные объекты, углы, кривые или окружности – все это крайне сложно понять, а затем еще и интерпретировать количественные данные при наблюдении за аналитическим отчетом. Выбор фреймворка и паттерна для визуализации оказывает крайне сильное влияние на возможность человека декодировать аналитический контент, который ранее был подготовлен с использованием данных.
Например, какое из чисел больше? А или B? Насколько оно больше?
Восприятие большего числа – МасГил