litbaza книги онлайнРазная литератураАпология математики (сборник статей) - Владимир Андреевич Успенский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 21 22 23 24 25 26 27 28 29 ... 142
Перейти на страницу:
церковь можно сравнить с назначением профессора учителем деревенской школы. Причину «административной ссылки» Бирюков видит в прямом и насмешливом характере Первушина.

Конечно или бесконечно множество простых чисел Мерсенна? Этот вопрос, как мы знаем, равносилен вопросу о конечности или бесконечности множества чётных совершенных чисел и потому ждёт своего ответа. На октябрь 2014 г. было известно 48 простых чисел Мерсенна – ровно столько же, сколько известно чётных совершенных чисел. Наибольшее найденное простое число Мерсенна – это число М57885161. Оно и было наибольшим найденным к тому времени простым числом.

Издавна ведутся записи, отмечающие наибольшие известные на то время простые числа. Один из рекордов поставил в своё время Эйлер, найдя простое число 2³¹ – 1 = 2 147 483 647.

Наибольшим известным простым числом по состоянию на август 2017 г. является 274 207 281 – 1. Его нашли 17 сентября 2015 г. в рамках проекта по распределённому поиску простых чисел Мерсенна GIMPS[33], однако все проверки завершились лишь 7 января 2016 г. В этот день в 22 часа 30 минут Всемирного координированного времени (UTC), когда в Москве было уже половина третьего ночи 8 января, проект GIMPS отметил двадцатую годовщину своего существовании открытием нового простого числа, наибольшего из известных. Это было число Мерсенна M74207281, содержащее в своей записи 22 338 618 десятичных знаков. За нахождение простых чисел из более чем 100 000 000 и 1 000 000 000 десятичных цифр EFF[34] назначила денежные призы соответственно в 150 000 и 250 000 долларов США. Ранее EFF уже присуждала призы за нахождение простых чисел из 1 000 000 и 10 000 000 десятичных цифр.

Свойства простых чисел

Каждое число n, кроме единицы, имеет хотя бы один простой делитель. Доказать этот факт весьма просто. Возьмём какое угодно число n, большее единицы. Среди делителей нашего числа n заведомо присутствуют числа, отличные от единицы: например, само число n. Составим список всех отличных от единицы делителей числа n, выберем из них наименьший (т. е. самый маленький) и как-нибудь его обозначим: например, q. Вот это q и будет тем простым делителем числа n, который мы ищем. Мы уже знаем, что q отлично от единицы. Осталось убедиться, что q не делится ни на что, кроме единицы и самого себя. Возьмём какое-то отличное от единицы число x, на которое делится q, и покажем, что оно равно q. В самом деле, это x служит делителем числа q, а q служит делителем числа n; значит, x также служит делителем числа n (см. раздел «Напоминание: делимость, чётность и простота»). Значит, оно входит в составленный нами список и потому не может быть меньше, чем наименьший член этого списка, каковым является q. Вместе с тем x, будучи делителем числа q, не может быть больше, чем q (см. раздел «Напоминание: делимость, чётность и простота»). Для x остаётся одна возможность – совпасть с q.

Ещё в III в. до н. э. в «Началах» Евклида было доказано, что среди простых чисел нет наибольшего: их ряд 2, 3, 5, …, 829, 839, 853, …, 2797, 2801, 2803, … никогда не кончается; иными, современными, словами, совокупность простых чисел бесконечна. Предложение 20 книги IX «Начал» гласит, что простых чисел больше, чем в любом предъявленном списке таковых; доказательство же этого предложения состоит в описании способа, позволяющего для любого списка простых чисел указать простое число, в этом списке не содержащееся. Отметим, что Евклид нигде не говорит о совокупности всех простых чисел в целом – само представление о бесконечных совокупностях как об особых сущностях появилось значительно позже.

Доказательство Евклида настолько просто и поучительно, что сейчас мы его воспроизведём. Итак, мы хотим убедиться, что невозможен такой конечный список чисел, который содержал бы все простые числа. Для этого возьмём какой угодно конечный список простых чисел (k, l, m, …, r, s, t) и найдём простое число, в нём отсутствующее; это будет означать, что простые числа не могут быть исчерпаны никаким конечным списком. Перемножим все числа нашего списка. Мы получим число k · l · m · … · r · s · t. Чтобы о нём говорить, как-нибудь его обозначим, например Q. Ясно, что это Q делится на каждое из чисел k, l, m, …, r, s, t нашего списка. Теперь посмотрим на число Q + 1. Оно больше единицы, а потому, как мы убедились выше, у него найдётся хотя бы один простой делитель. Обозначим буквой p какой-нибудь простой делитель числа Q + 1. Он не может совпадать ни с одним из чисел k, l, m, …, r, s, t, потому что тогда бы получалось, что на это p делятся два последовательных числа, а именно Q и Q + 1, что невозможно. Вот мы и нашли простое число, не входящее в наш список (k, l, m, …, r, s, t). Другое, уже не такое короткое, но весьма остроумное доказательство бесконечности ряда простых чисел принадлежит великому швейцарско-российскому математику Леонарду Эйлеру. Сказанное не вполне точно. Эйлеру не было нужды доказывать хорошо известный факт. Но он доказал одну теорему, содержание которой мы приведём ниже, а из неё этот факт немедленно вытекает. Поэтому мы позволим себе говорить о доказательстве Эйлера.

Доказательство Эйлера

Прежде всего условимся временно отказаться от нашего соглашения называть числами только положительные целые числа. Рассмотрим какую-либо конечную или бесконечную совокупность положительных чисел. Будем называть эту совокупность ограниченной сверху, если существует такое число, которое больше всех чисел, входящих в рассматриваемую совокупность. Всякое такое число будем называть верхним ограничителем этой совокупности. Ясно, что если наша совокупность конечна, то она ограничена сверху: в качестве верхнего ограничителя можно взять, например, сумму всех чисел, принадлежащих нашей совокупности. (Бесконечная совокупность чисел также может быть ограничена сверху, даже если её члены возрастают. Такова, например, совокупность {1/2, 2/3, 3/4, 4/5, …}. Действительно, одним из её верхних ограничителей является число 6. (Упражнение для читателя: какой из ограничителей этой совокупности является самым маленьким?) Предположим далее, что нам удалось расположить все числа исследуемой совокупности в виде конечной или бесконечной последовательности (A):

(A) a1, a2, a3, a4, a5, ….

Если наша совокупность конечна, то последовательность (A) где-то оборвётся. Если же совокупность бесконечна, то последовательность (A) продолжается неограниченно. Будем теперь одну за другой образовывать суммы начальных членов этой последовательности: сначала образуем сумму двух первых членов, затем первых трёх и т. д.,

1 ... 21 22 23 24 25 26 27 28 29 ... 142
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?