Шрифт:
Интервал:
Закладка:
Ну вот, как видите, система образования задумана как будто совсем неплохо, все устроено вполне разумно, и даже деньги на все это есть (французы, правда, все время тоже говорят, что денег на образование катастрофически не хватает, но это просто оттого, что они не знают, что значит не хватает на самом деле). И, тем не менее, могу сообщить тем, кто еще не знает, что "хотели, как лучше, а получилось, как всегда" бывает не только в России. Французское образование (и я подозреваю, что далеко не только французское) — яркий тому пример.
В силу специфики своей деятельности в своем дальнейшем повествовании я буду иногда вынужден апеллировать к экспертам в области высшей математики. Я имею в виду тех, кто знает все четыре правила арифметики, а также умеет складывать дроби и в общих чертах знаком с таблицей умножения.
Так вот, в этом учебном году я обнаружил, что среди пятидесяти моих учеников — первокурсников (у меня две группы) восемь человек считают, что три шестых (3/6) равно одной трети (1/3). Подчеркну: это молодые люди, которые только что сдали "научный БАК", то есть тот, в котором приоритет отдается математике и физике. Все эксперты, которым я это рассказывал, и которые не имеют опыта преподавания в парижских университетах, сразу же становятся в тупик. Пытаясь понять, как такое может быть, они совершают стандартную ошибку, свойственную всем экспертам: пытаются найти в этом логику, ищут (ошибочное) математическое рассуждение, которое может привести к подобному результату. На самом деле все намного проще: им это сообщили в школе, а они, как прилежные ученики (а в университет попадают только прилежные ученики!), запомнили. Вот и все. Я их переучил: на очередном занятии (темой которого вообще-то было производная функции) сделал небольшое отступление и сообщил, что 3/6 равно 1/2, а вовсе не 1/3, как считают некоторые из присутствующих. Реакция была такая: "Да? Хорошо…" Если бы я им сообщил, что это равно 1/10, реакция была бы точно такой же.
В предыдущие два учебных года процентов десять-пятнадцать моих студентов систематически обнаруживали другое, не менее "нестандартное" математическое знание: они полагали, что любое число в степени -1 равно нулю. Причем это была не случайная фантазия, а хорошо усвоенное знание, потому что проявлялось неоднократно (даже после моих возражений) и срабатывало в обе стороны: если обнаруживалось что-либо в степени -1, то оно тут же занулялось, и наоборот, если что-либо требовалось занулить, подгонялась степень -1. Резюме то же самое: их так научили.
Вот чему несчастных французских детей никак не могут по-настоящему научить, так это обращаться с дробями. Вообще, дроби (их сложение, умножение, а особенно деление) — постоянная головная боль моих студентов. Из своего пятилетнего опыта преподавания могу сообщить, что сколько-нибудь уверенно обращаться с дробями могли не больше десятой части моих первокурсников. Надо сказать, что арифметическая операция деления — это, пожалуй, самая трудная тема современного французского среднего образования. Подумайте сами, как объяснить ребенку, что такое деление: небось станете распределять поровну шесть яблочек среди троих мальчиков? Как бы не так. Чтобы рассказать, как учат делению во французской школе, я опять вынужден обращаться к экспертам. Пусть не все, но кое-кто из вас еще помнит правило деления в столбик. Так вот, во французской школе операция деления вводится в виде формального алгоритма деления в столбик, который позволяет из двух чисел (делимого и делителя) путем строго определенных математических манипуляций получить третье число (результат деления). Разумеется, усвоить этот ужас можно, только проделав массу упражнений, и состоят эти упражнения вот в чем: несчастным ученикам предъявляются шарады в виде уже выполненного деления в столбик, в котором некоторые цифры опущены, и эти отсутствующие цифры требуется найти. Естественно, после всего этого, что бы тебе ни сказали про 3/6, согласишься на что угодно.
Разумеется, кроме описанных выше, так сказать, "систематических нестандартных знаний" (которым научили в школе) имеется много просто личных, случайных фантазий. Некоторые из них очень смешные. Например, один юноша как-то предложил переносить число из знаменателя в числитель с переменой знака. Другая студентка, когда косинус угла между двумя векторами у нее получился равным 8, заключила, что сам угол равен 360 градусов умножить на восемь, ну и так далее. У меня есть целая коллекция подобных казусов, но не о них сейчас речь. В конце концов, то, что молодые люди еще способны фантазировать, — это не так уж плохо. Думать в школе их уже отучили (а тех, кого еще не отучили, в университете отучат — это уж точно), так пусть пока хоть так проявляют живость ума (пока они, живость и ум, еще есть).
Довольно долго я никак не мог понять, как с подобным уровнем знаний все эти молодые люди сумели сдать БАК, задачи в котором, как правило, составлены на вполне приличном уровне и решить которые (как мне казалось) можно, лишь обладая вполне приличными знаниями. Теперь я знаю ответ на этот вопрос. Дело в том, что практически все задачи, предлагаемые на ВАКе, можно решить с помощью хорошего калькулятора — они сейчас очень умные, эти современные калькуляторы: и любое алгебраическое преобразование сделают, и производную функции найдут, и график ее нарисуют. При этом пользоваться калькулятором при сдаче ВАКа официально разрешено. А уж что-что, а быстро и в правильном порядке нажимать на кнопочки современные молодые люди учатся очень лихо. Одна беда — нет-нет да и ошибешься, в спешке не ту кнопочку нажмешь, и тогда получается конфуз. Впрочем, "конфуз" — это с моей, старомодной, точки зрения, а по их, современному, мнению — просто ошибка, ну что поделаешь, бывает. К примеру, один мой студент что-то там не так нажал, и у него получился радиус планеты Земля равным 10 миллиметрам. А, к несчастью, в школе его не научили (или он просто не запомнил), какого размера наша планета, поэтому полученные им 10 миллиметров его совершенно не смутили. И лишь когда я сказал, что его ответ неправильный, он стал искать ошибку. Точнее, он просто начал снова