litbaza книги онлайнИсторическая прозаИстория математики - Ричард Манкевич

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 37 38 39 40 41 42 43 44 45 ... 50
Перейти на страницу:

Теория вероятности достигла нового уровня сложности в переписке 1654 года между Блезом Паскалем и Пьером де Ферма. Они обсуждали так называемую проблему очков игрока, которая касается разделения выигрыша между двумя игроками, когда игру в кости приходится оставить незаконченной. Этой проблемой занимались многие итальянские математики эпохи Ренессанса, включая Пачоли, Кардано и Тарталью, но ни один из них не добился окончательного решения. Ферма предпочел метод, основанный на составлении списка всех возможных результатов и вычислении абсолютного победителя в каждой игре. Вычисления становятся весьма длинными, поскольку число игр увеличивается, и Паскаль предпочитает метод математического ожидания. В своем «Трактате об арифметическом треугольнике» он объяснял отношения между числами в треугольнике Паскаля и о необходимых комбинациях. Каждый ряд треугольника дает коэффициенты биномиального разложения: третий ряд, например, дает числа 1, 3, 3, 1, которые служат коэффициентами разложения (а+ b)3 = а3 + 3a2b + 3ab2 + b3. Число 3 во втором элементе показывает, что есть три комбинации, дающие а2b, то есть aab, аbа и bаа. Используя соответствующий ряд в треугольнике Паскаля, можно таким образом быстро решить задачу разделения выигрыша. Если игроку А нужно две игры для того, чтобы выиграть, в то время как игроку В для этого нужно три игры, то один из игроков должен победить по крайней мере в четырех играх. Из ряда 1, 4, 6, 4, 1 в треугольнике Паскаля, выигрыш должен быть разделен в соотношении (1+4+6): (4+1) или 11:5.

Эти проблемы обычно обсуждались в терминах дробей, а не вероятностей. Первое теоретическое обсуждение вероятностей, лежащих в промежутке между 0 и 1, мы находим в трактате «Искусство предположений» Якоба Бернулли, изданном в 1713 году уже после его смерти. Он также указал, что вероятности можно оценить по частоте выпадения события, и попытался установить верхний предел числа испытаний, после которого можно быть «нравственно уверенным» в оценке вероятностей. К сожалению, такое строгое условие приводило к очень высоким значениям числа необходимых испытаний: например, чтобы быть на 99,9 % уверенным относительно правильного соотношения числа шаров разного цвета в коробке, потребовалось бы 25.500 испытаний. Эта процедура была уточнена Абрахамом де Муавром (1667–1754), который правильно оценил нормальное распределение как предел двучлена и получил более разумное число испытаний, позволяющих экспериментально приблизиться к истинным значениям вероятности. Де Муавр также многократно переиздавал свой труд «Страхование жизни», в котором эти открытия были применены к оценке страхования жизни и вычислению ренты. Стимул для того, чтобы применить вероятностные методы к демографическим данным, появился совершенно неожиданно. И здесь нам снова придется обратить взор к небесам.

Астрономам, пытавшимся определить точные орбиты планет, приходилось полагаться на результаты ряда наблюдений, в каждом из которых имелась небольшая ошибка. Таким образом, каждое измерение могло привести к немного иному уравнению орбиты планеты, и было неясно, какой метод следует использовать, чтобы гарантировать, что взятый набор данных позволит вычислить самую точную орбиту. И Кеплер, и Галилей боролись с этими ошибками наблюдения. Основной идеей было найти кривую, которая минимизировала бы общее число ошибок, и в 1805 году эта задача была решена Лежандром в его «Новых методах определения орбит комет» методом наименьших квадратов. В этой работе было приведено понятное обоснование и дан удобный обобщенный метод. В 1809 году Гаусс публикует свой метод в трактате «Теория движения небесных тел», утверждая, что использует его уже с 1795 года, и тем самым оспаривая приоритет Лежандра. Действительно, похоже, что уже в 1801 году Гаусс использовал именно этот метод для вычисления пути движения недавно обнаруженного астероида Церера на основании всего нескольких неоднородных данных наблюдений, сделанных ранее в том же году. Он также показал, что распределение ошибок происходило по тому, что сегодня называют гауссианой или нормальной кривой, и обобщало более ранний результат де Муавра. Обоснование метода Гаусса заключалось в том, что это распределение делало среднее значение наблюдений наиболее вероятным. Затем Лаплас уточнил методику расчета: каким бы ни было распределение ошибок отдельных замеров, их средние значения стремились к нормальному распределению. Он также показал, что оценки наименьших квадратов Лежандра будут также стремиться к тому же самому распределению. Астрономы быстро признали ценность предложенного метода, тем более что было известно — ошибки астрономических наблюдений были неизбежными. К ним приводила не просто недостаточная точность измерительных инструментов, но и искажение пути движения света, идущего от звезд и попадающего в очаги турбулентности в атмосфере. В 1812 году Лаплас издал свой великий трактат «Аналитическая теория вероятности», в котором синтезировал все события в математике, происходившие до этого момента. Эта книга оставалась для многих поколений ученых главным текстом по математике.

В социальном контексте теория вероятности считалась «исчислением рационального поведения». В 1814 году Лаплас сказал, что вероятность — это просто здравый смысл, преобразованный в вычисления. Математики эпохи Просвещения полагали, что просвещенные люди действуют рационально и вероятность дает обычным людям измеримый образец, с помощью которого они могли бы, по крайней мере, подражать здравому смыслу лучших представителей общества. Целью ученых было создание универсального стандарта человеческого поведения, а исследование азартных игр было просто способом найти инструменты для того, чтобы принимать рациональные решения в мире, полном неопределенностей. Например, Лаплас и другие ученые рассматривали вероятность того, что суд с определенным количеством присяжных вынесет несправедливый приговор. Но другие мыслители были совершенно не согласны с рационалистическим духом французской революции. Джон Стюарт Милль считал, что разумное решение лучше определяется путем наблюдения и эксперимента, а не посредством умозрительных вероятностных предположений.

Адольф Кетле (1796–1874), бельгийский математик и астроном, выявил связь между статистикой, стоявшей на службе у астрономии, и социальной статистикой. В основе его идеи о «среднем человеке» лежала формула нормального распределения. Так же, как отдельные несовершенные данные о наблюдениях за звездой группировались вокруг ее истинного положения, так и свойства реальных людей распределялись вокруг «среднего значения». Таким образом, отклонение от этой «теоретической нормы» считалось своего рода ошибкой измерения. Он считал государственно важным делом собрать и проанализировать демографические данные так, чтобы «социальный физик» мог раскрыть социальные законы, аналогичные физическим законам. Он объяснял свои теории тем, что показатели рождений, смертей, преступлений и браков, похоже, оставались неизменными из года в год, хотя в разных странах эти цифры могли различаться между собой, таким образом оправдывая предположение, что каждое социальное тело имеет устойчивую, но несколько отличную от других «социальную физику».

Такие социальные данные начали собирать в семнадцатом веке и продолжают делать это до сих пор. В 1662 году Джон Граунт издал свои «Природные и политические наблюдения», основанные на статистическом анализе лондонских «Отчетов о смертности населения», которые печатались еженедельно и использовались как барометр, чтобы предупреждать людей о возможном начале эпидемии и дать им возможность покинуть город. В 1693 году астроном Эдмонд Галлей издал «таблица продолжительности жизни», основанные на отчетах о смертности жителей города Бреслау, данные которого были более точными, чем те, к которым имел доступ Граунт. Галлей также смог показать, что правительство того времени слишком дешево продает ежегодную пожизненную ренту. Математическая статистика конца девятнадцатого века может считаться новой ветвью математики, которая соединила статистические методы астрономов и приемы сбора данных страховщиков.

1 ... 37 38 39 40 41 42 43 44 45 ... 50
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?