Шрифт:
Интервал:
Закладка:
1845
Gorey C. (2020). 80m images used to train AI pulled after researchers find string of racist terms / siliconrepublic, 13 Jul 2020 // https://www.siliconrepublic.com/machines/mit-database-racist-misogynist-discovery-abeba-birhane
1846
Quach K. (2020). MIT apologizes, permanently pulls offline huge dataset that taught AI systems to use racist, misogynistic slurs. Top uni takes action after El Reg highlights concerns by academics / The Register, 1 Jul 2020 // https://www.theregister.com/2020/07/01/mit_dataset_removed/
1847
Krizhevsky A., Sutskever I., Hinton G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks / Advances in Neural Information Processing Systems 25 (NIPS 2012) // https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
1848
Bai K. (2019). A Comprehensive Introduction to Different Types of Convolutions in Deep Learning: Towards intuitive understanding of convolutions through visualizations / Towards Data Science, Feb 12, 2019 // https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
1849
Hahnloser R. H. R., Sarpeshkar R., Mahowald M. A., Douglas R. J., Seung S. (2000). Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit / Nature, Vol. 405, pp. 947—951 // https://doi.org/10.1038/35016072
1850
Glorot X., Bordes A., Bengio Y. (2011). Deep Sparse Rectifier Neural Networks. / Journal of Machine Learning Research 15 (2011), pp. 315-323 // https://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
1851
Liu D. (2017). A Practical Guide to ReLU: Start using and understanding ReLU without BS or fancy equations // https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7
1852
Krizhevsky A., Sutskever I., Hinton G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks (Slides) // http://image-net.org/challenges/LSVRC/2012/supervision.pdf
1853
Godoy D. (2018). Hyper-parameters in Action! Part II — Weight Initializers / Towards Data Science, Jun 18, 2018 // https://towardsdatascience.com/hyper-parameters-in-action-part-ii-weight-initializers-35aee1a28404
1854
Glorot X., Bengio Y. (2010). Understanding the difficulty of training deep feedforward neural networks / Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Journal of Machine Learning Research, Vol. 9, pp. 249—256 // http://www.jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
1855
He K., Zhang X., Ren S., Sun J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification / Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026—1034 // https://doi.org/10.1109/ICCV.2015.123
1856
Liang X. (2019). Understand Kaiming Initialization and Implementation Detail in PyTorch: Initialization Matters! Know how to set the fan_in and fan_out mode with kaiming_uniform_ function / Towards Data Science, Aug 7, 2019 // https://towardsdatascience.com/understand-kaiming-initialization-and-implementation-detail-in-pytorch-f7aa967e9138
1857
Godoy D. (2018). Hyper-parameters in Action! Part II — Weight Initializers / Towards Data Science, Jun 18, 2018 // https://towardsdatascience.com/hyper-parameters-in-action-part-ii-weight-initializers-35aee1a28404
1858
Zhu C., Ni R., Xu Z., Kong K., Huang W. R., Goldstein T. (2021). GradInit: Learning to Initialize Neural Networks for Stable and Efficient Training // https://arxiv.org/abs/2102.08098
1859
Krizhevsky A., Sutskever I., Hinton G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks / Advances in Neural Information Processing Systems 25 (NIPS 2012) // https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
1860
Krizhevsky A., Sutskever I., Hinton G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks (Slides) // http://image-net.org/challenges/LSVRC/2012/supervision.pdf
1861
Karpathy A. CS231n Convolutional Neural Networks for Visual Recognition (Stanford CS class) // http://cs231n.github.io/convolutional-networks/
1862
Girard R. (2015). How does Krizhevsky's '12 CNN get 253,440 neurons in the first layer? / StackExchange // https://stats.stackexchange.com/questions/132897/how-does-krizhevskys-12-cnn-get-253-440-neurons-in-the-first-layer
1863
Chellapilla K., Puri S., Simard P. (2006). High performance convolutional neural networks for document processing / International Workshop on Frontiers in Handwriting Recognition, 2006 // https://hal.inria.fr/inria-00112631
1864
Nasse F., Thurau C., Fink G. A. (2009). Face Detection Using GPU-Based Convolutional Neural Networks / International Conference on Computer Analysis of Images and Patterns, CAIP 2009 // https://doi.org/10.1007/978-3-642-03767-2_10
1865
* Под ансамблем в машинном обучении понимают объединение нескольких моделей для решения одной задачи, позволяющее достичь лучшего результата, чем при использовании каждой модели по отдельности; для получения результирующего прогноза ансамбля результаты входящих в него моделей могут усредняться либо комбинироваться каким-то более сложным образом.
1866
Cireșan D., Meier U., Masci J., Schmidhuber J. (2012). Multi-Column Deep Neural Network for Traffic Sign Classification // http://people.idsia.ch/~juergen/nn2012traffic.pdf
1867
Schmidhuber J. 2011: First Superhuman Visual Pattern Recognition. IJCNN 2011 competition in Silicon Valley: twice better than humans, three times better than the closest artificial competitor, six times better than the best non-neural method // http://people.idsia.ch/~juergen/superhumanpatternrecognition.html
1868
Tsang S.-H. (2018). Review: ZFNet — Winner of ILSVRC 2013 (Image Classification) // https://medium.com/coinmonks/paper-review-of-zfnet-the-winner-of-ilsvlc-2013-image-classification-d1a5a0c45103
1869
Tsang S. H. (2018). Review: ZFNet — Winner of ILSVRC 2013 (Image Classification) // https://medium.com/coinmonks/paper-review-of-zfnet-the-winner-of-ilsvlc-2013-image-classification-d1a5a0c45103
1870
* Во многих популярных статьях, посвящённых результатам ILSVRC-2014, результирующая ошибка указана равной 6,67%. На самом деле точное значение ошибки — 0,06656, то есть 6,66%. Интересно, кто так «округлил» результат? И сделано ли это было во славу Господа?
1871
Das S. (2017). CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and more… // https://medium.com/analytics-vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
1872
Tsang S. H. (2018). Review: GoogLeNet (Inception v1)— Winner of ILSVRC 2014 (Image Classification) // https://medium.com/coinmonks/paper-review-of-googlenet-inception-v1-winner-of-ilsvlc-2014-image-classification-c2b3565a64e7
1873
Simonyan K., Zisserman A. (2015). Very deep convolutional networks for large-scale image recognition // https://arxiv.org/abs/1409.1556
1874
Shao J., Zhang X., Ding Z., Zhao Y., Chen Y., Zhou J., Wang W., Mei L., Hu C. (2016). Good Practices for Deep Feature Fusion // http://image-net.org/challenges/talks/2016/[email protected]
1875
Hu J., Shen