Шрифт:
Интервал:
Закладка:
2124
Mnih A., Hinton G. E. (2009). A scalable hierarchical distributed language model / Advances in neural information processing systems, Vol. 21, pp. 1081—1088 // https://papers.nips.cc/paper/3583-a-scalable-hierarchical-distributed-language-model
2125
Mnih A., Teh Y. W. (2012). A fast and simple algorithm for training neural probabilistic language models // Proceedings of the 29th International Coference on International Conference on Machine Learning, pp. 419—426 // https://arxiv.org/abs/1206.6426
2126
Collobert R., Weston J. (2008). A unified architecture for natural language processing: deep neural networks with multitask learning / Proceedings of the 25th international conference on Machine learning, pp. 160—167 // https://doi.org/10.1145/1390156.1390177
2127
Turian J., Ratinov L., Bengio Y. (2010). Word representations: a simple and general method for semi-supervised learning / Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 384—394 // https://dl.acm.org/doi/10.5555/1858681.1858721
2128
Mikolov T., Chen K., Corrado G., Dean J. (2013). Efficient Estimation of Word Representations in Vector Space / International Conference on Learning Representations (ICLR-2013) // https://arxiv.org/abs/1301.3781
2129
Mikolov T., Sutskever I., Chen K., Corrado G., Dean J. (2013). Distributed Representations of Words and Phrases and their Compositionality / Proceedings of the 26th International Conference on Neural Information Processing Systems, Vol. 2, pp. 3111—3119 // https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
2130
Mikolov T., Sutskever I., Chen K., Corrado G., Dean J. (2013). Distributed Representations of Words and Phrases and their Compositionality / Proceedings of the 26th International Conference on Neural Information Processing Systems, Vol. 2, pp. 3111—3119 // https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
2131
Mikolov T., Kombrink S., Deoras A., Burget L, Černocký J. (2011). RNNLM — Recurrent Neural Network Language Modeling Toolkit / Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop, 2011, pp. 1—4 // https://www.fit.vut.cz/research/publication/10087/.en
2132
Wilson B., Schakel A. M. J. (2015). Controlled Experiments for Word Embeddings // https://arxiv.org/abs/1510.02675
2133
Rajasekharan A. (2017). How does word2vec work? Can someone walk through a specific example? / Quora // https://www.quora.com/How-does-word2vec-work-Can-someone-walk-through-a-specific-example/answer/Ajit-Rajasekharan
2134
Gong C., He D., Tan X., Qin T., Wang L., Liu T.-Y. (2020). FRAGE: Frequency-Agnostic Word Representation // https://arxiv.org/abs/1809.06858
2135
Mikolov T., Chen K., Corrado G., Dean J. (2013). Efficient Estimation of Word Representations in Vector Space / International Conference on Learning Representations (ICLR-2013) // https://arxiv.org/abs/1301.3781
2136
İrsoy O., Benton A., Stratos K. (2020). kōan: A Corrected CBOW Implementation // https://arxiv.org/abs/2012.15332
2137
Сапунов Г. (2021). kōan: A Corrected CBOW Implementation (Ozan İrsoy, Adrian Benton, Karl Stratos) / gonzo-обзоры ML статей, Jan 19, 2021 // https://t.me/gonzo_ML/452
2138
* Социальное познание (англ. social cognition) — процесс познания одного человека другим, одна из сфер, изучаемых социальной психологией, которая исследует механизмы хранения, переработки и использования человеком информации о других людях и социальных ситуациях.
2139
** Организационное поведение (англ. organizational behavior) — научная дисциплина, занимающаяся исследованием поведения людей в организациях.
2140
Richie R., Zou W., Bhatia S., Vazire S. (2019). Predicting High-Level Human Judgment Across Diverse Behavioral Domains / Psychology, Vol. 5, Iss. 1, p. 50 // https://doi.org/10.1525/collabra.282
2141
Baroni M., Dinu G., Kruszewski G. (2014). Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors / Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) // https://doi.org/10.3115/v1/P14-1023
2142
Sivakumar S., Videla L. S., Rajesh Kumar T., Nagaraj J., Itnal S., Haritha D. (2020). Review on Word2Vec Word Embedding Neural Net / 2020 International Conference on Smart Electronics and Communication (ICOSEC) // https://doi.org/10.1109/icosec49089.2020.9215319
2143
Adewumi T. P., Liwicki F., Liwicki M. (2020). Word2Vec: Optimal Hyper-Parameters and Their Impact on NLP Downstream Tasks // https://arxiv.org/abs/2003.11645
2144
Pennington J., Socher R., Manning C. (2014). GloVe: Global Vectors for Word Representation / Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543. // https://doi.org/10.3115/v1/D14-1162
2145
Bojanowski P., Grave E., Joulin A., Mikolov T. (2016). Enriching Word Vectors with Subword Information // https://arxiv.org/abs/1607.04606
2146
Peters M. E., Neumann M., Iyyer M., Gardner M., Clark C., Lee K., Zettlemoyer L. (2018). Deep contextualized word representations // https://arxiv.org/abs/1802.05365
2147
Sales J. E., Souza L., Barzegar S., Davis B., Freitas A., Handschuh S. (2018). Indra: A Word Embedding and Semantic Relatedness Server / Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018) // https://aclanthology.org/L18-1211/
2148
Asgari E., Mofrad M. R. K. (2015). ProtVec: A Continuous Distributed Representation of Biological Sequences // https://arxiv.org/abs/1503.05140
2149
Asgari E., Mofrad M. R. K. (2015). Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics / PLoS One, Vol. 10 (11), e0141287 // https://doi.org/10.1371/journal.pone.0141287
2150
Jaeger S., Fulle S., Turk S. (2017). Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition. / Journal of Chemical Information and Modeling, Vol. 58. Iss. 1, pp. 27–35. // https://doi.org/10.1021/acs.jcim.7b00616
2151
Zhang Y.-F., Wang X., Kaushik A.C., Chu Y., Shan X., Zhao M.-Z., Xu Q., Wei D.-Q. (2020). SPVec: A Word2vec-Inspired Feature Representation Method for Drug-Target Interaction Prediction / Frontiers in