Шрифт:
Интервал:
Закладка:
1996
Kutz J. N. (2017). Deep learning in fluid dynamics / Journal of Fluid Mechanics, Vol. 814, 10 March 2017, pp. 1—4 // https://doi.org/10.1017/jfm.2016.803
1997
Zhang Y. G., Gajjar V., Foster G., Siemion A., Cordes J., Law C., Wang Y. (2018). Fast Radio Burst Pulse Detection and Periodicity: A Machine Learning Approach / The Astrophysical Journal, Vol. 866, No. 2 // https://doi.org/10.3847%2F1538-4357%2Faadf31
1998
Wei J. N., Duvenaud D., Aspuru-Guzik A. (2016). Neural Networks for the Prediction of Organic Chemistry Reactions / ACS Central Science, October 14, 2016, 2, 10, 725—732 // https://doi.org/10.1021/acscentsci.6b00219
1999
Rajpurkar P., Hannun A. Y., Haghpanahi M., Bourn C., Ng A. Y. (2017). Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks // https://arxiv.org/abs/1707.01836
2000
Schirrmeister R. T., Springenberg J. T., Fiederer L. D. J., Glasstetter M., Eggensperger K., Tangermann M., Hutter F., Burgard W., Ball T. (2017). Deep learning with convolutional neural networks for EEG decoding and visualization / Human Brain Mapping, Vol. 38, Iss. 11, November 2017, pp. 5391—5420 // https://doi.org/10.1002/hbm.23730
2001
Pyrkov T. V., Slipensky K., Barg M., Kondrashin A., Zhurov B., Zenin A., Pyatnitskiy M., Menshikov L., Markov S., Fedichev P. O. (2018). Extracting biological age from biomedical data via deep learning: too much of a good thing? / Scientific Reports, Vol. 8, Article num.: 5210 (2018) // https://doi.org/10.1038/s41598-018-23534-9
2002
Lin W., Tong T, Gao Q., Guo D., Du X., Yang Y., Guo G., Xiao M., Du M., Qu X. (2018). Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer’s Disease Prediction From Mild Cognitive Impairment / Frontiers in Neuroscience, 05 November 2018 // https://doi.org/10.3389/fnins.2018.00777
2003
* Лидар (LIDAR, Light Detection and Ranging, обнаружение и определение дальности с помощью света) — технология измерения расстояний путём излучения света (лазер) и замера времени возвращения этого отражённого света на ресивер.
2004
Velas M., Spanel M., Hradis M., Herout A. (2018). CNN for very fast ground segmentation in velodyne LiDAR data / 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Torres Vedras, 2018, pp. 97—103 // https://doi.org/10.1109/ICARSC.2018.8374167
2005
Martinsson E. (2017). WTTE-RNN: Weibull Time To Event Recurrent Neural Network. A model for sequential prediction of time-to-event in the case of discrete or continuous censored data, recurrent events or time-varying covariates. Master’s thesis in Engineering Mathematics & Computational Science // http://publications.lib.chalmers.se/records/fulltext/253611/253611.pdf
2006
Rebedea T. (2017). Deep Neural Networks for Matching Online Social Networking Profiles / Conference on Computational Collective Intelligence Technologies and Applications // https://doi.org/10.1007/978-3-319-67074-4_19
2007
Tan Q., Liu N., Hu X. (2019). Deep Representation Learning for Social Network Analysis / Frontiers in Big Data, 03 April 2019 // https://doi.org/10.3389/fdata.2019.00002
2008
Hamilton W. L, Ying R., Leskovec J. (2017). Representation Learning on Graphs: Methods and Applications / IEEE Data Engineering Bulletin // https://arxiv.org/abs/1709.05584
2009
Lample G., Charton F. (2019). Deep Learning for Symbolic Mathematics // https://arxiv.org/abs/1912.01412
2010
Palaskar S., Sanabria R., Metze F. (2018). End-to-End Multimodal Speech Recognition // https://arxiv.org/abs/1804.09713
2011
Nag N., Bharadwaj A., Rao A. N., Kulhalli A., Mehta K. S., Bhattacharya N., Ramkumar P., Sitaram D., Jain R. (2019). Flavour Enhanced Food Recommendation // https://arxiv.org/abs/1904.05331
2012
Lee B. K., Mayhew E. J., Sanchez-Lengeling B., Wei J. N., Qian W. W., Little K. A., Andres M., Nguyen B. B., Moloy T., Yasonik J., Parker J. K., Gerkin R. C., Mainland J. D., Wiltschko A. B. (2023). A principal odor map unifies diverse tasks in olfactory perception / Science, Vol. 381, pp. 999-1006 // https://doi.org/10.1126/science.ade4401
2013
Graves A., Wayne G., Danihelka I. (2014). Neural Turing Machines // https://arxiv.org/abs/1410.5401
2014
Graves A., Wayne G., Reynolds M., Harley T., Danihelka I., Grabska-Barwińska A., Colmenarejo S. G., Grefenstette E., Ramalho T., Agapiou J., Badia A. P., Hermann K. M., Zwols Y., Ostrovski G., Cain A., King H., Summerfield C., Blunsom P., Kavukcuoglu K., Hassabis D. (2016). Hybrid computing using a neural network with dynamic external memory / Nature, Vol. 538, pp. 471—476 (2016) // https://doi.org/10.1038/nature20101
2015
Collier M., Beel J. (2019). Memory-Augmented Neural Networks for Machine Translation // https://arxiv.org/abs/1909.08314
2016
* Пер. Н. Россова.
2017
Шаврина Т. О. (2017). Методы обнаружения и исправления опечаток: исторический обзор / Вопросы языкознания. № 4. С. 115—134 // https://doi.org/10.31857/S0373658X0001024-5
2018
* * * * * ** ** * Пер. П. Мелкова.
2019
Gardner W. D. (2008). Remembering Joe Weizenbaum, ELIZA Creator / InformationWeek // https://www.informationweek.com/remembering-joe-weizenbaum-eliza-creator-/d/d-id/1065648
2020
LordOmar (2000). AOLiza / everything2 // https://everything2.com/title/AOLiza
2021
Colby K. M., Hilf F. D., Weber S., Kraemer H. C. (1972). Turing-like indistinguishability tests for the validation of a computer simulation of paranoid processes / Artificial Intelligence, Vol., 1972, pp. 199—221 // https://doi.org/10.1016/0004-3702(72)90049-5
2022
Saygin A. P., Cicekli I., Akman V. (2003). Turing Test: 50 Years Later / Moor J. H. (2003). The Turing Test. The Elusive Standard of Artificial Intelligence. Studies in Cognitive Systems, Vol. 30, pp. 23–78 // https://doi.org/10.1007/978-94-010-0105-2_2
2023
Luiselli J. K., Fischer A. J. (2016). Computer-Assisted and Web-Based Innovations in Psychology, Special Education, and Health. Academic Press // https://books.google.ru/books?id=NwLSBgAAQBAJ
2024
Sussman G. J., Winograd T., Charniak E. (1971). Micro-Planner reference manual. Artificial Intelligence Memo