Шрифт:
Интервал:
Закладка:
DNA methylation age is associated with mortality in a longitudinal Danish twin study, Christiansen L., Lenart A., Tan Q., Vaupel J., Aviv A., Mcgue M., Christensen K. Aging Cell (2016) 15(1): 149–154.
The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936, Marioni R. et al., International Journal of Epidemiology (2015) 44(4): 1388–1396.
Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring Horvath S. et al., Aging (2015) 7(12): 1159–1170.
An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease, Horvath S. et al., Genome Biology (2016) 17(1): 171.
DNA methylation age is elevated in breast tissue of healthy women, Sehl M., Henry J., Storniolo A., Ganz P., Horvath S., Breast Cancer Research and Treatment (2017) 164(1): 209–219.
Methylation-Based Biological Age and Breast Cancer Risk, Kresovich J., Xu Z., O’Brien K., Weinberg C., Sandler D., Taylor J., JNCI: Journal of the National Cancer Institute (2019) 111(10): 1051–1058.
The cerebellum ages slowly according to the epigenetic clock, Horvath S. et al., Aging (2015) 7(5): 294–306.
Body mass index is associated with epigenetic age acceleration in the visceral adipose tissue of subjects with severe obesity, De Toro-Martín J., Guénard F., Tchernof A., Hould F., Lebel S., Julien F., Marceau S., Vohl M., Clinical Epigenetics (2019) 11(1): 172.
Cardiovascular disease and menopause, Dosi R., Bhatt N., Shah P., Patell R., Journal of Clinical and Diagnostic Research (2014).
Age at menopause, cause-specific mortality and total life expectancy, Ossewaarde M. et al., Epidemiology (2005) 16(4): 556–562.
Что нас не убивает, то… продлевает нам жизнь
A Mitochondrial Superoxide Signal Triggers Increased Longevity in Caenorhabditis elegans, Yang W., Hekimi S., PLoS Biology (2010) 8(12): e1000556.
Cancer risks in a population with prolonged low dose-rate γ-radiation exposure in radiocontaminated buildings, 1983–2002, Hwang S., Guo H., Hsieh W., Hwang J., Lee S., Tang J., Chen C., Chang T., Wang J., Chang W., International Journal of Radiation Biology (2006) 82(12): 849–858.
Nuclear shipyard worker study (1980–1988): a large cohort exposed to low-dose-rate gamma radiation, Sponsler R., Cameron J. (2005) 463–478.
Background radiation impacts human longevity and cancer mortality: Reconsidering the linear no-threshold paradigm, David E., Wolfson M., Fraifeld V., bioRxiv.
100 years of observation on British radiologists: Mortality from cancer and other causes 1897–1997, Berrington A., Darby S., Weiss H., Doll R., British Journal of Radiology (2001) 74(882): 507-
Ionizing radiation activates the Nrf2 antioxidant response, McDonald J. et al., Cancer Research (2010) 70(21): 8886–8895.
Does the oxidative stress theory of aging explain longevity differences in birds? I. Mitochondrial ROS production, Montgomery M., Hulbert A., Buttemer W., Experimental Gerontology (2012) 47(3): 203–210.
The naked mole-rat response to oxidative stress: Just deal with it, Lewis K., Andziak B., Yang T., Buffenstein R., Antioxidants and Redox Signaling.
Lower mortality rates in those living at moderate altitude, Burtscher M., Aging.
Lower mortality from coronary heart disease and stroke at higher altitudes in Switzerland, Faeh D., Gutzwiller F., Bopp M., Circulation (2009) 120(6): 495–501.
Residence in mountainous compared with lowland areas in relation to total and coronary mortality. A study in rural Greece, Baibas N., Trichopoulou A., Voridis E., Trichopoulos D., Journal of Epidemiology and Community Health (2005) 59(4): 274–278.
Association between Alzheimer dementia mortality rate and altitude in California counties, Thielke S., Slatore C., Banks W., JAMA Psychiatry.
Cardiovascular and Other Health Benefits of Sauna Bathing: A Review of the Evidence, Laukkanen J., Laukkanen T., Kunutsor S., Mayo Clin Proc (2018) 93(8): 1111–1121.
ComBATing aging—does increased brown adipose tissue activity confer longevity? Darcy J., Tseng Y., GeroScience.
Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension, Schmeisser S., Schmeisser K., Weimer S., Groth M., Priebe S., Fazius E., Kuhlow D., Pick D., Einax J., Guthke R., Platzer M., Zarse K., Ristow M., Aging Cell (2013) 12(3): 508–517.
Isolation and characterisation of urushiol components from the Australian native cashew (Semecarpus australiensis), Oelrichs P., MacLeod J., Seawright A., Ng J., Natural Toxins (1998) 5(3): 96–98.
Efficacy of reverse micellar extracted fruit bromelain in meat tenderization, Chaurasiya R., Sakhare P., Bhaskar N., Hebbar H., Journal of Food Science and Technology (2015) 52(6): 3870–3880.
Significance of heat shock proteins in the skin upon UV exposure, Jonak C., Klosner G., Trautinger F., Frontiers in Bioscience (2009) 14(12): 4758–4768.
Поедая самих себя
A UV-Independent Topical Small-Molecule Approach for Melanin Production in Human Skin, Mujahid N. et al., CellReports (2017) 19: 2177–2184.
The Nobel Prize in Physiology or Medicine 2016, NobelPrize.org, Nobel Media AB 2020.
Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. Elegans, Kumsta C., Chang J., Schmalz J., Hansen M., Nature Communications (2017) 8(1): 1–12.
Walking the Oxidative Stress Tightrope: A Perspective from the Naked Mole-Rat, the Longest-Living Rodent, А. Rodriguez K. et al., Current Pharmaceutical Design (2011) 17(22): 2290–2307.
A wide diversity of bacteria from the human gut produces and degrades biogenic amines, Pugin B. et al., Microbial Ecology in Health and Disease (2017) 28(1): 1353881.
Cardioprotection and lifespan extension by the natural polyamine spermidine, Eisenberg T. et al., Nature Medicine (2016) 22(12): 1428–1438.
Higher spermidine intake is linked to lower mortality: A prospective population-based study, Kiechl S. et al., American Journal of Clinical Nutrition (2018) 108(2): 371–380.
Decrease in Polyamines with Aging and Their Ingestion from Food and Drink, Nishimura K., Shiina R., Kashiwagi K., Igarashi K., The Journal of Biochemistry (2006) 139(1): 81–90.