Шрифт:
Интервал:
Закладка:
3
Если нам непременно хочется, чтобы за Демокритом осталось сбывшееся предсказание неделимых частиц в основе мира, то вполне можно решить, что он предсказал электрон, а заодно, может быть, и все кварки и лептоны из Стандартной модели элементарных частиц, а мы в XIX в. просто ошиблись, назвав словом «атом» (т. е. «неделимый») неправильную вещь – составной объект.
4
Заряды противоположных знаков притягиваются друг к другу, поэтому избыток зарядов одного знака, как правило, вызывает приток противоположных, так что в итоге достигается электрическая нейтральность, т. е. полный заряд равный нулю. Здесь, кстати, подразумевается довольно многое, что, возможно, могло бы быть устроено иначе в какой-нибудь другой вселенной: что зарядов «плюс» и «минус» в целом поровну и, более того, что заряды электрона и протона в точности противоположны, несмотря на очень сильно различающееся устройство этих двух носителей; что, да, одноименные отталкиваются, а разноименные притягиваются; и, главное, что электрический заряд сохраняется: нельзя создать положительный заряд, не создав где-то неподалеку отрицательного.
5
Никакие другие силы, действующие между протонами ядра и электронами, не могут обеспечить их совместного проживания. Гравитационное притяжение между ними составляет фантастически малую величину, учет которой никакого смысла не имеет.
6
Уточнения про энергию в квантовой механике последуют в главе 3, а затем мы еще раз вернемся к ее особой роли в главе 9.
7
У слова «квантование» есть и другое значение: построение квантового описания исходя из неквантового. Из того, что встретится далее в этой книге, так говорят, например, о переходе от «обычной» колебательной системы к квантовой или от классического поля к квантовому.
8
В общепринятой терминологии «вражда» – это «некоммутативность эрмитовых операторов в гильбертовом пространстве, соответствующих физическим величинам». Отсюда, пожалуй, сразу видна предпочтительность моего изобретения – слова «вражда» и производных от него.
9
Положение – точка в пространстве, описываемая тремя величинами в какой-нибудь системе координат. Скорость представляет собой вектор, т. е. тоже три величины – длины проекций вектора на три оси координат. Выбрав прямоугольную систему координат с осями x, y, z, мы имеем вражду между соответствующими компонентами: координата вдоль оси x враждует с компонентой скорости вдоль той же оси x, но прекрасно «дружит» с компонентами скорости вдоль оси y и оси z. Аналогично и для других направлений: координата y враждует только с компонентой скорости вдоль оси y, а координата z – только с компонентой скорости вдоль оси z.
10
Общепринятое название – оператор, но мне не хочется перегружать текст новыми словами.
11
По Бору, истинность или ложность высказывания о какой-либо величине, относящейся к квантовому миру, зависит от используемого прибора, поэтому такие высказывания непременно должны включать в себя сведения об устройстве экспериментальной установки и об исходе эксперимента.
12
Степень раскрутки может принимать значения 0, ħ, ħ√2, ħ√2 · 3, ħ√3 · 4, ħ√4 · 5 и т. д. За ними стоит математический объект, который только при таких значениях и существует. Частичной (неполной!) визуализацией этого математического объекта являются «электронные облака», которые служат незаменимым подспорьем для целого ряда качественных рассуждений в химии. Никакой электрон, разумеется, облаком не является, а картина облаков никак не отвечает на вопрос, «что делают» электроны в атоме или молекуле; вместо этого она визуализует ответ на вопрос, где чаще, а где реже можно обнаружить электрон при взаимодействии с каким-либо внешним агентом, например высокоэнергетическим гамма-квантом.
13
Здесь требуются два уточнения. Во-первых, у атомов одного элемента имеются изотопы, различающиеся числом нейтронов в атомном ядре. Само по себе это важно, но для нас сейчас интересно в минимальной степени. Во-вторых, и это существенно, атомы одного элемента одинаковы по своей электронной структуре в одних и тех же условиях. Помещение атома в магнитное поле вызывает сдвиг «энергетических ступенек» для его электронов, причем величина сдвига зависит от того, какие атрибуты вращения взяли себе эти электроны. В результате интервалы между различными ступеньками изменяются, а потому изменяются длины волн, которые атом может поглощать и излучать. Это дает потрясающий метод измерения характеристик магнитного поля на расстоянии, начиная от магнитного поля Солнца и много дальше в космосе.
14
По поводу единственности способа сборки простых молекул также имеется важное уточнение, касающееся изомерии. В ряде случаев есть несколько вариантов сборки – например, два варианта могут быть зеркальным отражением друг друга. Такая и даже более богатая вариативность играет свою роль в химии (и в том числе в химии живого), но при этом неизменным остается тот факт, что различные варианты дискретны: между ними нет плавных переходов.
15
Дискретность колебаний атомов в молекуле также определяет длины волн света, испускаемого и поглощаемого молекулами. Молекулярные спектры сложнее атомных. В них видны и электронные линии (отражающие, как и в атоме, перескоки электронов между своими энергетическими ступеньками), и собственно колебательные линии, группирующиеся в полосы вблизи каждой электронной линии; имеется, кроме того, и еще более тонкая вращательная структура, определяемая дискретными значениями, которые принимают «атрибуты вращения». Наблюдение всех подробностей требует тут более высокого разрешения, чем в случае атомных спектров. Именно по молекулярным спектрам – научившись преодолевать значительные практические сложности – мы, например, ищем биомаркеры в атмосферах экзопланет.
16
Примеры двухатомных молекул – фтороводород (при растворении в воде становится плавиковой кислотой), хлороводород (при растворении в воде становится соляной кислотой), угарный газ и окись азота.
17
Шаг между значениями, которые может принимать энергия колебаний, определяется тем, что в классическом мире было бы частотой колебаний: если бы квантовые правила перестали действовать, мы могли бы говорить о том, как часто колебательная система такого сорта возвращается к одному и тому же положению. Чем больше эта частота, тем шире расположены энергетические ступеньки в квантовой колебательной системе.
18
Точный смысл, в каком понимается такая неопределенность, – не самый простой вопрос. Можно думать о среднем (квадратичном) отклонении при многократно повторяемых измерениях, проводимых над одинаково приготовленными системами.
19
Как уже отмечалось, связаны между собой неопределенности вдоль одного и того же направления: неопределенность положения вдоль x обратно пропорциональна неопределенности скорости вдоль того же направления x, и аналогично для направлений y и z в прямоугольной системе координат.
20
Это не самое точное и не самое лучшее пояснение к механизму туннелирования, но точное объяснение потребовало бы нескольких понятий, с которыми мы знакомимся только в последующих главах, да и то вместе с неожиданно длинным списком математических фактов.
21
Иногда уточняют, что это так называемое остаточное сильное взаимодействие: оно действует между протонами и нейтронами, которые сами являются составными объектами, сложенными каждый из трех кварков. Собственно сильное взаимодействие занимается тем, что неразрывно связывает эти тройки кварков путем обмена промежуточными агентами, называемыми глюонами. Протоны и нейтроны связаны друг с другом тоже благодаря сильному ядерному взаимодействию, но агентами, переносящими взаимодействие между ними, работают пи-мезоны, каждый из которых сложен из кварка и антикварка.
22
Туннелирование электрона из атома в довольно специальных условиях, созданных электромагнитным полем проходящего лазерного импульса, – ключевой (хотя и не единственный) элемент в схеме генерации импульсов сверхмалой, аттосекундной продолжительности; это тема Нобелевской премии по физике 2023 г.
23
После того как два протона