litbaza книги онлайнДомашняяМозг Брока - Карл Эдвард Саган

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 69 70 71 72 73 74 75 76 77 ... 100
Перейти на страницу:

Используемый позже радиоинтерферометр с более высоким разрешением показал, что у Юпитера по бокам расположено два симметричных «уха» радиоизлучения с той же общей конфигурацией, как и у радиационных поясов Ван Аллена вокруг Земли. Выстроилась общая картина: на обеих планетах электроны и протоны из солнечного ветра захватываются и ускоряются дипольным магнитным полем планеты и движутся по спиральной траектории вдоль силовой линии магнитного поля планеты, колеблясь между двумя магнитными полюсами. Область радиоизлучения вокруг Юпитера является его магнитосферой. Чем сильнее магнитное поле, тем дальше от планеты будет находиться граница магнитного поля. Вдобавок, если принять во внимание, что наблюдаемый спектр в радиодиапазоне формируется синхротронным излучением, можно определить силу магнитного поля. Ее нельзя определить с высокой точностью, но большинство оценок, сделанных с помощью радиоастрономических методов в конце 1960-х гг. и начале 1970-х гг., лежат в диапазоне от 5 до 30 Гс, что приблизительно в 10–60 раз больше магнитного поля у поверхности Земли на экваторе.

Радхакришнан с коллегами также обнаружили, что поляризация дециметровых волн, исходящих от Юпитера, регулярно изменялась по мере вращения планеты, как будто радиационные пояса Юпитера колебались относительно луча зрения. Они предположили, что причина заключается в 9-градусном наклоне между осью вращения и магнитной осью планеты – очень похоже на расхождение северного географического и северного магнитного полюсов Земли. Последующие исследования дециметрового и декаметрового излучения, которые проводил Джеймс Уорвик из Университета Колорадо и др., указывали на то, что магнитная ось Юпитера смещена на малую долю радиуса Юпитера от оси вращения, в отличие от Земли, где обе оси пересекаются в центре Земли[161]. Также ученые пришли к выводу, что южный магнитный полюс Юпитера находится в северном полушарии, то есть компас, указывающий на север Юпитера, будет указывать на юг. В этом нет ничего странного. Магнитное поле Земли меняло свое направление много раз в течение своей истории, и считается, что северный магнитный полюс находится в Северном полушарии Земли в настоящее время, только потому, что ученые так решили. На основе интенсивности дециметрового и декаметрового излучения астрономы также вычислили, какие могут быть энергии и потоки электронов и протонов в магнитосфере Юпитера.

Это очень широкий ряд выводов. Но все они теоретические. Вся эта тщательно продуманная суперсистема была протестирована 3 декабря 1973 г., когда космический зонд «Пионер-10» пролетел через магнитосферу Юпитера. На борту были размещены магнитометры, которые измеряли силу и направление магнитного поля в разных точках магнитосферы, и различные детекторы заряженных частиц, которые измеряли энергии и потоки захваченных электронов и протонов. Поразительно, но факт, что практически каждый вывод, сделанный на основе радиоастрономических методов исследования, был в общем и целом подтвержден «Пионером-10» и его преемником «Пионером-11». Экваториальное магнитное поле на поверхности Юпитера составляет около 6 Гс и больше на полюсах. Наклон магнитной оси к оси вращения составляет около 10°. Положение магнитной оси можно описать как явно смещенное на четверть радиуса Юпитера от центра планеты. На расстоянии от Юпитера, большем чем три его радиуса, магнитное поле планеты приблизительно совпадает с магнитным полем диполя; ближе к Юпитеру оно гораздо сложнее, чем оценивалось.

Поток заряженных частиц, уловленный «Пионером-10» вдоль его траектории сквозь магнитосферу, был значительно больше, чем ожидалось, но не настолько, чтобы вывести из строя космический аппарат. «Пионер-10» и «Пионер-11» успешно прошли через магнитосферу Юпитера благодаря везению и точным инженерным расчетам, а не точности магнитосферных теорий, существовавших до запуска «Пионеров».

В общем, синхротронная теория дециметрового излучения Юпитера подтверждена. Все те радиоастрономы знали, что они делают. Сейчас мы можем доверять с гораздо большей уверенностью, чем прежде, выводам, сделанным на основе синхротронной физики и примененным к другим, более далеким и менее доступным космическим объектам, таким как пульсары, квазары или остатки сверхновых. На самом деле, эти теории сейчас можно перепроверить и увеличить их точность. Теоретическая радиоастрономия впервые была проверена экспериментальным путем и успешно прошла эту проверку. Из многих важных открытий, сделанных «Пионером-10» и «Пионером-11», я считаю, это его величайший триумф: оно подтвердило наше понимание важной области космической физики.

Мы все еще многого не понимаем о магнитосфере и радиоизлучениях Юпитера. Свойства декаметровых волн все еще представляют собой загадку. Почему на Юпитере существуют локализованные источники декаметрового излучения, вероятно, размером менее 100 км? Что это за источники излучения? Почему области декаметрового излучения вращаются вокруг планеты с высокой временно́й точностью – до семи значащих цифр, – но не синхронно с периодами вращения видимых объектов в облаках Юпитера? Почему декаметровые вспышки имеют очень сложную (субмиллисекундную) структуру? Почему декаметровые источники коллимированные, то есть не излучают одинаково во всех направлениях? Почему декаметровые источники прерывистые, то есть не «включены» все время?

Эти загадочные свойства декаметрового излучения Юпитера напоминают свойства пульсаров. У типичных пульсаров магнитные поля в триллион раз больше, чем у Юпитера, они вращаются в 100 000 раз быстрее, они в 1000 раз моложе, они в 1000 раз крупнее. Граница магнитосферы Юпитера движется со скоростью менее одной тысячной скорости конуса света пульсара. Тем не менее вполне возможно, что Юпитер – это не до конца образовавшийся пульсар, локальная и довольно невзрачная модель быстро вращающихся нейтронных звезд, которые являются одним из конечных продуктов звездной эволюции. Ответы на все еще сложные вопросы о механизмах излучения пульсара и геометрии магнитосферы может дать космическое наблюдение декаметрового излучения Юпитера вблизи: например, в ходе миссий «Вояджера» и «Галилео» НАСА.

Экспериментальная астрофизика развивается быстрыми темпами. Самое позднее через несколько десятилетий мы должны увидеть непосредственное экспериментальное исследование межзвездной среды: гелиопауза – граница между областью, в которой преобладает солнечный ветер, и областью, где преобладает межзвездная плазма, – по оценкам ученых, располагается на расстоянии не более 100 астрономических единиц (15 млрд км) от Земли. (Если бы там по соседству с Солнечной системой находились квазар и черная дыра – ничего фантастического, вы понимаете, только малыши, – мы могли бы путем измерений in situ с помощью космических аппаратов проверить важнейшие теории современной астрофизики.)

Если мы можем судить по прошлому опыту, каждый будущий астрофизический эксперимент с помощью космических аппаратов покажет, что (а) важнейшие представления астрофизиков были верными; (б) никто не знал наверняка, какие именно представления окажутся верными, пока не были получены результаты исследований, проведенных с космических аппаратов; и (в) эти результаты позволили обнаружить целый ряд новых, еще более интригующих и фундаментальных проблем.

1 ... 69 70 71 72 73 74 75 76 77 ... 100
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?