litbaza книги онлайнРазная литератураАпология математики (сборник статей) - Владимир Андреевич Успенский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 82 83 84 85 86 87 88 89 90 ... 142
Перейти на страницу:
n раз в катете треугольника Q, пусть далее этот отрезок укладывается n´ раз в катете треугольника Q´, n´´ раз – в катете треугольника Q´´ и т. д. Поскольку длины катетов уменьшаются, то n > n´ > n´´ > n´´´ > …; таким образом, мы получаем бесконечную последовательность убывающих натуральных чисел, что невозможно. А это значит, что было неверным наше исходное предположение о существовании у катета и гипотенузы треугольника Q общей меры.

Осталось указать, как по треугольнику Q = Δ ABC строится треугольник Q´.

На гипотенузе BC исходного треугольника Q откладываем отрезок BD, равный катету (рис. 1). Из D восстанавливаем перпендикуляр к BC. Обозначим через E точку пересечения этого перпендикуляра с прямой, проходящей через точки A и C. Убедимся, что эта точка располагается между точками A и C, т. е. на стороне AC, а не на продолжении этой стороны за точку A. Соединив прямой точки A и D (на рис. 1 эта прямая показана штриховой линией), получаем треугольник ADB. Этот треугольник равнобедрен по построению, и его углы BDA и BAD, прилежащие к равным сторонам, равны. В треугольнике не может быть ни двух прямых углов, ни двух тупых, поэтому угол BDA острый и, следовательно, меньше прямого угла BDE, а потому прямая DE не может идти внутри угла BDA. Значит, она проходит внутри угла ADC, в чём и требовалось убедиться.

Изучим наш чертёж более детально и установим три соотношения между его деталями. В прямоугольном (по построению) треугольнике CED угол ECD равен половине прямого угла, а общая сумма углов треугольника равна двум прямым; отсюда следует, что и угол CED равен половине прямого. Мы видим, что в треугольнике CED углы при его вершинах C и E равны; следовательно, этот треугольник равнобедренный с равными сторонами DE и DC:

|DE| = |DC|. (1)

Соединим точки B и E. Замечаем, что треугольники BEA и BED имеют общую сторону BE и равные стороны BA и BD; поскольку они прямоугольны, то сказанного достаточно для их равенства. Следовательно,

|EA| = |ED|. (*)

Соединяя формулы (*) и (1), получаем второе из искомых соотношений:

|AE| = |DC|. (2)

Наконец, выводим третье соотношение. Поскольку, как только что доказано, |DC| = |AE|, то |DC| = |AE| < |AC| = |AB|. Итак,

|DC| < |AC| = |AB|. (3)

Теперь уже нетрудно показать, что в качестве искомого треугольника Q´ можно взять треугольник CED. Действительно, он прямоуголен по построению и равнобедрен, как показывает соотношение (1). Его катет короче катета исходного треугольника Q = Δ ABC, как показывает соотношение (3). Осталось убедиться, что всякая общая мера гипотенузы и катета треугольника ABC служит также и общей мерой для гипотенузы и катета треугольника CED. В самом деле, пусть некоторая общая мера сторон треугольника ABC укладывается p раз в его катете и q раз – в его гипотенузе BC. Тогда она укладывается p раз в равном катету отрезке BD и q – p раз – в отрезке CD. Поскольку, согласно соотношению (2), отрезок AE равен отрезку CD, то и в AE эта общая мера укладывается q – p раз. Значит, в отрезке EC она укладывается р – (q – p) раз. Итак, эта мера укладывается целое число раз и в катете CD, и в гипотенузе EC треугольника CED, т. е. является их общей мерой.

Замечание. Египетский треугольник и обратная теорема Пифагора. Теорема Пифагора утверждает, что в любом прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы (понятно, что надо бы говорить о длинах катетов и гипотенузы, но слово «длина» для краткости часто опускается). Всякая тройка целых чисел, выражающих длины сторон какого-либо прямоугольного треугольника, называется пифагоровой. Пифагоровых троек бесконечно много, из них тройка (3, 4, 5) имеет наименьшие члены, а прямоугольный треугольник с такими длинами сторон называется египетским. Происхождение названия таково. В Древнем Египте этот треугольник использовался в строительстве для построения прямого угла. Верёвка, разбитая на 12 равных частей, растягивалась в трёх точках так, чтобы эти точки стали вершинами треугольника со сторонами длиною в 3, 4 и 5 частей. Треугольник оказывался прямоугольным. Тем не менее само существование египетского треугольника требует доказательства. Построить треугольник с длинами сторон 3, 4, 5 нетрудно, но вот почему он будет прямоугольным? Нередко можно услышать ответ: «По теореме Пифагора, потому что 3² + 4² = 5²». Ответ неверен. Теорема Пифагора утверждает, что в прямоугольном треугольнике выполняется известное соотношение между длинами сторон. Но она не утверждает, что, если это соотношение выполняется, треугольник прямоуголен. Этот факт составляет содержание другой теоремы, обратной к теореме Пифагора и называемой для краткости обратной теоремой Пифагора. Обратная теорема Пифагора гласит: если в каком-то треугольнике сумма квадратов двух сторон равна квадрату третьей, то треугольник прямоуголен и против большей стороны лежит прямой угол. Её доказательство чрезвычайно просто. Пусть длины сторон треугольника Δ суть a, b, c, причём a² + b² = c². На сторонах прямого угла отложим от его вершины O отрезки OX и OY, равные, соответственно, a и b. Возникает прямоугольный треугольник OXY, гипотенуза XY которого имеет по теореме Пифагора длину

 т. е. c. Таким образом, треугольники Δ и OXY имеют соответственно равные стороны и, следовательно, равны. Значит, треугольник Δ прямоугольный и против стороны с длиной c лежит прямой угол.

Пример 19. Иррациональность квадратного корня из двух. Геометрическое доказательство. Предположим, что этот корень рационален и выражается дробью

Тогда Замечаем, что m² = 2n² ⇒ m² < 4n² ⇒ m < n + n и что n < n + m. Поэтому для тройки чисел (n, n, m) выполняются неравенства треугольника и возможен треугольник со сторонами длины n и m. По обратной теореме Пифагора этот треугольник прямоуголен, причём единичный отрезок укладывается в его катете n раз, а в гипотенузе – m раз. Следовательно, единичный отрезок служит общей мерой катета и гипотенузы этого равнобедренного прямоугольного треугольника, так что они соизмеримы, чего не может быть (см. пример 18).

Замечание. Выпуклые фигуры. Напомним, что геометрическая фигура называется выпуклой, если она обладает следующим свойством (α): для любых двух точек фигуры отрезок, соединяющий эти точки, находится в пределах этой фигуры. В качестве полезного упражнения рекомендуем читателю доказать, что для любой совокупности выпуклых фигур фигура, образованная

1 ... 82 83 84 85 86 87 88 89 90 ... 142
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?