litbaza книги онлайнРазная литератураАпология математики (сборник статей) - Владимир Андреевич Успенский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 86 87 88 89 90 91 92 93 94 ... 142
Перейти на страницу:
Тогда есть основание выдвинуть гипотезу об истинности универсальной формулировки – но всего только гипотезу, ибо то, чего не удалось найти сегодня, будет, возможно, обнаружено завтра. Вот три замечательных примера, показывающих, что метод неполной индукции не работает в математике.

Пример 28. Великий французский математик XVII в. Пьер Ферма изучал числа вида 22ⁿ + 1, которые стали называть числами Ферма. Ферма полагал, что все они суть числа простые. Для такого мнения, казалось бы, имелись основания, ведь при n = 0, 1, 2, 3, 4 числа Ферма и в самом деле являются простыми. Однако в XVIII в. великий швейцарский (да и российский тоже) математик Леонард Эйлер обнаружил, что число 2²5 + 1 есть произведение двух простых чисел 641 и 6 700 417. Более того, неизвестно, существуют ли простые числа Ферма помимо вышеуказанных пяти, открытых ещё самим Ферма.

Пример 29. Трёхчлен x² + x + 41, указанный Эйлером, принимает простые значения при x = 0, 1, 2, …, 39. Однако при x = 40 его значением будет число составное, а именно 41².

Пример 30. Если брать различные значения n и разлагать двучлен xn – 1 на множители с целыми коэффициентами, то можно заметить, что у каждого из многочленов сомножителей все его коэффициенты равны либо 1, либо –1. Например, x6 – 1 = (x – 1) (x + 1) (x² + x + 1) × (x² – x + 1). Была выдвинута гипотеза, что это обстоятельство справедливо для любого n. Однако доказать эту гипотезу почему-то не удавалось. А в 1941 г. выяснилось, что, хотя коэффициенты разложения действительно обладают указанным свойством при всех n до 104 включительно, в разложении на множители двучлена x105 – 1 среди сомножителей появляется многочлен, у которого некоторые из коэффициентов равны –2.

§ 8. Алфавиты и буквы. Слова и строки. Взаимно однозначные соответствия и мощность. Диагональный метод

В математике любой конечный список знаков принято называть алфавитом. Не предполагается, что эти знаки что-нибудь означают. Иногда говорят не о знаках, а о символах, но опять-таки не предполагая, что они что-либо символизируют. (Честнее было бы говорить не о знаках или символах, а о закорючках, но это уж как-то слишком ненаучно.) Члены алфавита называются буквами.

Первый математический алфавит, который узнаёт школьник, – это алфавит десятичных цифр с буквами 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. А вот алфавит римских цифр: I, V, X, L, C, D, M.

Конечная последовательность идущих друг за другом букв алфавита называется словом в этом алфавите. Например, «ъЪрйрьоь» есть слово в русском алфавите. Пример показывает, что далеко не всякое слово в русском алфавите является русским словом, т. е. словом русского языка.

Слова также называют строками. Содержание этих терминов одинаковое, а различаются они сферами употребления: термин «слово» чаще употребляют те, кто занимается теоретическими изысканиями, тогда как термин «строка» употребителен в более прикладной среде, в частности в информатике. Мы будем использовать оба термина.

Количество букв в слове (строке) именуют его (её) длиной. Так, длина приведённого выше слова в русском алфавите есть 8.

Пример 31. Если алфавит состоит из одной буквы, то число слов длины n равно 1.

Пример 32. Доказать, что если алфавит состоит из двух букв, то число слов длины n равно 2n.

Каждое слово длины n получается приписыванием одной из двух букв алфавита к слову длины n – 1. Стало быть, при удлинении слова на одну букву количество слов удваивается. А количество слов длины 1 есть два.

В примере 32 мы начали с двух слов длины 1. А могли бы начать и с одного слова длины 0, вовсе не содержащего букв. Такое слово называется пустым и обозначается заглавной греческой буквой «лямбда» (Λ).

Рассмотрим множество {a; b; c} из трёх элементов: a, b и c. Напомним, что для того, чтобы получить имя множества, достаточно заключить в фигурные скобки список имён его элементов, разделив их имена запятой или точкой с запятой (последнее удобнее). Найдём все части, или подмножества, нашего множества. Во-первых, три одноэлементные части: {a}, {b}, {c}. Во-вторых, три двухэлементные части: {b; c}, {a; c}, {a; b}. В-третьих (поскольку всякое множество считается частью самого себя), трёхэлементную часть {a; b; c}. Наконец, пустое множество Ø, не содержащее ни одного элемента и считающееся частью любого множества. Всего частей оказалось 8.

Пример 33. Сколько частей у множества, содержащего n элементов?

Пронумеруем элементы числами от 1 до n. Каждой части отнесём строку длины n из плюсов и минусов, образованную по следующему правилу: если элемент с номером k принадлежит нашей части, на k-м месте строки ставим плюс; если же k-й элемент не принадлежит рассматриваемой части, на k-м месте строки ставим минус. Заметим, что не только каждой части множества соответствует ровно одна строка, но и каждой строке длины n, составленной из плюсов и минусов, соответствует ровно одна часть.

Мы получили то, что называется взаимно однозначным соответствием между двумя множествами – в данном случае между множеством частей и множеством строк.

В общем случае взаимно однозначным соответствием между множествами X и Y называется такое соответствие между ними, когда каждому элементу из X соответствует ровно один элемент из Y и каждый элемент из Y соответствует ровно одному элементу из X. Если между двумя множествами имеет место взаимно однозначное соответствие, то количества элементов в обоих множествах совпадают.

Собственно, количество элементов – это и есть то общее свойство, что несут в себе все те множества, между которыми можно установить взаимно однозначные соответствия. Невозможность такого соответствия между множествами X и Y означает различие количеств элементов, содержащихся в этих множествах.

Это математическое уточнение интуитивного понятия количества элементов множества, основанное на понятии взаимно однозначного соответствия, принадлежит одному из величайших математиков XIX в., создателю теории множеств, без которой немыслима современная математика, немецкому учёному Георгу Кантору. Кантор, в частности, первым обнаружил, что бесконечные множества могут содержать различные количества элементов.

В математике количество элементов множества принято называть его мощностью.

Таким образом, выражения:

1. Два множества имеют одинаковое количество элементов;

2. Два множества равноколичественны;

3. Два множества имеют одинаковую мощность;

4. Два множества равномощны;

5. Между двумя множествами можно установить взаимно однозначное соответствие

синонимичны. Они несут в себе одинаковый смысл.

Очевиден следующий принцип транзитивности:

если два множества равномощны третьему, то они равномощны друг другу.

(Предлагаем читателю в качестве упражнения самостоятельно сформулировать принцип транзитивности в терминах взаимно

1 ... 86 87 88 89 90 91 92 93 94 ... 142
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?