Шрифт:
Интервал:
Закладка:
20. Bibring J-P. et al. “Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data // Science 312, 5772 (2006). doi: 10.1126/science.1122659.
21. Murchie S. L. et al. A Synthesis of Martian Aqueous Mineralogy After 1 Mars Year of Observations from the Mars Reconnaissance Orbiter // JGR Planets 114, E2 (2009). doi: 10.1029/2009JE003342.
22. Jet Propulsion Laboratory. (2015) NASA’s Curiosity Rover Team Confirms Ancient Lakes on Mars. [Press release] URL: https://www.jpl.nasa.gov/news/news.php?feature=4734.
23. Rapin W. et al. An Interval of High Salinity in Ancient Gale Crater Lake on Mars // Nature Geoscience 12 (2019). doi: 10.1038/s41561-019-0458-8.
24. Villanueva G. L. et al. Strong Water Isotopic Anomalies in the Martian Atmosphere: Probing Current and Ancient Reservoirs // Science 348, 6231 (2015). doi: 10.1126/science.aaa3630.
25. Rodriguez J. A.P. et al. The 1997 Mars Pathfinder Spacecraft Landing Site: Spillover Deposits from an Early Mars Inland Sea // Scientific Reports 9 (2019). doi: 10.1038/s41598-019-39632-1.
26. col1_0 et al. Tsunami Waves Extensively Resurfaced the Shorelines of an Early Martian Ocean // Scientific Reports 6 (2016). doi: 10.1038/srep25106.
27. Mahaffy P. R. et al. Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover // Science 341, 6143 (2013). doi: 10.1126/science.1237966.
28. Webster C. R. et al. Isotope Ratios of H, C, and O in CO2 and H2O of the Martian Atmosphere // Science 341, 6143 (2013). doi: 10.1126/science.1237961.
29. Turbet M. & Forget F. The Paradoxes of the Late Hesperian Mars Ocean // Scientific Reports 9 (2019). doi: 10.1038/s41598-019-42030-2.
30. col1_0, Guest J.E. & Wilson C. J. Origin of the Olympus Mons Aureole and Perimeter Scarp // The Moon and the Planets 22 (1980). doi: 10.1007/BF00898433.
31. Isherwood R. J. et al. The Volcanic History of Olympus Mons from Paleotopography // Earth and Planetary Science Letters 363 (2013). doi: 10.1016/j.epsl.2012.12.020.
32. Richardson J. A. et al. Recurrence Rate and Magma Effusion Rate for the Latest Volcanism on Arsia Mons, Mars // Earth and Planetary Science Letters 458 (2017). doi: 10.1016/j.epsl.2016.10.040.
33. Wei-Hass Maya. First Active Fault Zone Found on Mars // National Geographic (December 24, 2019). URL: https://www.nationalgeographic.com/science/2019/12/first-active-fault-system-found-mars2/.
7. Преисподняя
1. NASA. Venus. [Factbox] URL: https://solarsystem.nasa.gov/planets/venus/by-the-numbers/.
2. NASA. (2017) “55 Years Ago: Mariner 2 First to Venus.” [Blog post] URL: https://www.nasa.gov/feature/55-years-ago-mariner-2-first-to-venus.
3. NASA. Venera 4. [Factbox] URL: https://solarsystem.nasa.gov/missions/venera-4/in-depth/.
4. Guinness World Records. Longest Time Survived on Venus by a Spacecraft. [Factbox] URL: https://www.guinnessworldrecords.com/world-records/78367-longest-time-survived-on-venus-by-a-spacecraft/.
5. Mouginis-Mark P. J. Geomorphology and Volcanology of Maat Mons, Venus // Icarus 277 (2016). doi: 10.1016/j.icarus.2016.05.022.
6. Krassilnikov A. S. & Head J. W. Novae on Venus: Geology, Classification, and Evolution // JGR Planets 108, E9 (2003). doi: 10.1029/ 2002JE001983.
7. Wilford John Noble. On Venus, Pancakes for Volcano Domes // New York Times (November 17, 1990). URL: https://www.nytimes.com/1990/11/17/us/on-venus-pancakes-for-volcano-domes.html.
8. Wilford John Noble. New Images Suggest Volcanism On Venus //New York Times (November 22, 1983). URL: https://www.nytimes.com/1983/11/22/science/new-images-suggest-volcanism-on-venus.html.
9. Smrekar S.E. et al. Recent Hotspot Volcanism on Venus from VIRTIS Emissivity Data // Science 328, 5978 (2010). doi: 10.1126/science.1186785.
10. Hall Shannon. Volcanoes on Venus Might Still Be Smoking //New York Times (January 9, 2020). URL: https://www.nytimes.com/2020/01/09/science/venus-volcanoes-active.html.
11. Filiberto J. et al. Present-Day Volcanism on Venus as Evidenced from Weathering Rates of Olivine // Science Advances 6, 1 (2020). doi: 10.1126/sciadv.aax7445.
12. Marcq E. et al. Variations of Sulphur Dioxide at the Cloud Top of Venus’s Dynamic Atmosphere // Nature Geoscience 6 (2013). doi: 10.1038/ngeo1650.
13. Gülcher A.J.P. et al. Corona Structures Driven by Plume – Lithosphere Interactions and Evidence for Ongoing Plume Activity on Venus // Nature Geoscience 13 (2020). doi: 10.1038/s41561-020-0606-1.
14. Way M.J. & Genio A. D.D. Venusian Habitable Climate Scenarios: Modeling Venus Through Time and Applications to Slowly Rotating Venus‐Like Exoplanets // JGR Planets 125, 5 (2020). doi: 10.1029/ 2019JE006276.
15. Elkins-Tanton L.T. et al. Field Evidence for Coal Combustion Links the 252 Ma Siberian Traps with Global Carbon Disruption // Geology 48, 10 (2020). doi: 10.1130/G47365.1.
16. Drake Nadia. Possible Sign of Life on Venus Stirs Up Heated Debate // National Geographic (September 14, 2020). URL: https://www.nationalgeographic.com/science/2020/09/possible-sign-of-life-found-on-venus-phosphine-gas/.
17. Scoles Sarah. ‘Dr. Phosphine’ and the Possibility of Life on Venus // Wired (Septem ber 14, 2020). URL: https://www.wired.com/story/dr-phosphine-and-the-possibility-of-life-on-venus/.
18. Sousa-Silva C. et al. Phosphine as a Biosignature Gas in Exoplanet Atmospheres // arXiv (2019). doi: 10.1089/ast.2018.1954.
19. Greaves J. S. et al. Phosphine Gas in the Cloud Decks of Venus // Nature Astronomy (2020a). doi: 10.1038/s41550-020-1174-4.
20. Stirone Shannon, Chang Kenneth & Overbye Dennis. Life on Venus? Astronomers See a Signal in Its Clouds // New York Times (September 14, 2020). URL: https://www.nytimes.com/2020/09/14/science/venus-life-clouds.html.
21. Morowitz H. & Sagan C. Life in the Clouds of Venus? // Nature 215 (1967). doi: 10.1038/2151259a0.
22. Limaye S. S. et al. Venus’ Spectral Signatures and the Potential for Life in the Clouds // Astrobiology 18, 9 (2018). doi: 10.1089/ast.2017.1783.
23. Wall K. et al. Biodiversity Hot Spot on a Hot Spot: Novel Extremophile Diversity in Hawaiian Fumaroles // MicrobiologyOpen 4, 2 (2015). doi: 10.1002/mbo3.236.
24. Makuch-Schulze D. et al. A Sulfur-Based Survival Strategy for Putative Phototrophic Life in the Venusian Atmosphere // Astrobiology 4, 1 (2004). doi: 10.1089/153110704773600203.
25. Seager S. et al. The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere // Astrobiology (2020). doi: 10.1089/ast.2020.2244.
26. Villanueva G. et al. No Phosphine in the Atmosphere of Venus // arXiv (2020). URL: https://arxiv.org/abs/2010.14305.
27. col1_0 et al. Re-analysis of the 267-GHz ALMA Observations of Venus: No Statistically Significant Detection of Phosphine // arXiv (2020). URL: https://arxiv.org/abs/2010.09761.
28. Mogol R., Limaye S. & Way M. Venus’ Mass Spectra Show Signs of Disequilibria in the Middle Clouds // ESSOAr (2020). doi: 10.1002/essoar.10504552.1.
29. Greaves J. S. et al. Re-analysis of Phosphine in Venus’ Clouds // arXiv (2020b). URL: https://arxiv.org/abs/2011.08176.
30. Andrews Robin George. Burying CAESAR: How NASA Picks Winners – and Losers – in Space Exploration // Scientific American (July 25, 2019). URL: https://www.scientificamerican.com/article/burying-caesar-how-nasa-picks-winners-and-losers-in-space-exploration/.
31. Choi Charles Q. Mars Life? 20 Years Later, Debate Over Meteorite Continues // Space.com (August 10, 2016). URL: https://www.space.com/33690-allen-hills-mars-meteorite-alien-life-20-years.html.
8. Кузня гиганта
1. Jet Propulsion Laboratory. Voyager Mission Timeline. [Factbox] URL: https://voyager.jpl.nasa.gov/mission/timeline/#event-a-once-in-a-lifetime-alignment.
2. Andrews Robin George. Uranus Ejected a Giant Plasma Bubble During Voyager 2’s Visit // New York Times (March 27, 2020). URL: https://www.nytimes.com/2020/03/27/science/uranus-bubble-voyager.html.
3. Jet Propulsion Laboratory. Did You Know? – Voyager. [Factbox] URL: https://voyager.jpl.nasa.gov/mission/did-you-know/.
4. Morabito L.A. Discovery of Volcanic Activity on Io – A Historical Review // arXiv (2012). URL: https://arxiv.org/pdf/1211.2554.pdf.
5. NASA. Jupiter Moons. [Factbox] URL: https://solarsystem.nasa.gov/moons/jupiter-moons/in-depth/.
6. Starr Michelle. You’ll Never Guess What Scientists Want to Call the Moon of a Moon // ScienceAlert (October 11, 2018). URL: https://www.sciencealert.com/can-a-moon-have-a-moon-kollmeister-raymond-submoon-moonmoon.
7. Peale S. J., Cassen P. & Reynolds R. T. Melting of Io by Tidal Dissipation // Science 203, 4383 (1979). doi: 10.1126/science.203.4383.892.
8. Andrews