litbaza книги онлайнДомашняяЕвангелие от LUCA. В поисках родословной животного мира - Максим Винарский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 14 15 16 17 18 19 20 21 22 ... 75
Перейти на страницу:

Хочется верить, что теперь старинная палеонтологическая загадка разрешена окончательно. Но даже если предположить, что на каждую подобную загадку рано или поздно отыщется отгадка, у ископаемой летописи останется еще один совершенно неустранимый недостаток: она неполна.

Архетипическим для европейской культуры образцом родословной являются библейские генеалогии: Авраам родил Исаака; Исаак родил Иакова; Иаков родил Иуду и братьев его; Иуда родил Фареса и Зару от Фамари и так далее. Поколения образуют непрерывную цепочку, так что от пращура к потомкам тянется сплошная генеалогическая линия. В палеонтологической летописи такие полные ряды исключительно редки. Проследить полную последовательность эволюционных событий от предка к потомкам — большая удача, гораздо чаще летопись прерывается «на самом интересном месте». В ней образуются зияния и провалы иной раз длиной в десятки миллионов лет, что объясняется неблагоприятными условиями захоронения остатков флоры и фауны или позднейшим разрушением слоев, содержащих ископаемые. Палеонтологическую летопись можно сравнить с объемным, но сильно пострадавшим от времени старинным манускриптом, из которого кое-где вырваны целые страницы, а многие строки настолько повреждены, что их смысл почти не поддается восстановлению…

Евангелие от LUCA. В поисках родословной животного мира

* Рисунок сделан на основе иллюстрации из статьи: Tapanila et al. 2013 Jaws for a spiral-tooth whorl: CT images reveal novel adaptation and phylogeny in fossil Helicoprion.

Итак, что ни год, то из земной коры извлекают сотни и тысячи новых окаменелостей, палеонтологические музеи всего мира ломятся от ископаемых, растут наши знания о живом прошлом Земли. Однако слова Дарвина о том, что земная кора, содержащая остатки вымерших организмов, «не может быть рассматриваема как богатый музей, а скорее как бедная коллекция, собранная наудачу и через долгие промежутки времени»[57], по-прежнему справедливы.

Восстановить полную филогению животного мира, основываясь только на палеонтологической летописи, невозможно. Неудивительно, что с давних времен исследователи пытались использовать и другие источники информации, например результаты изучения современных животных. История развития животного мира записана не только в горных породах; каждый ныне живущий вид имеет свою уникальную эволюционную историю, которую можно «считывать», изучая его экстерьер, внутреннее строение, особенности физиологии, размножения, поведения. В предыдущей главе мы уже видели, как сравнительная анатомия помогает ответить на вопрос, кто кому родня и в какой степени. Но это далеко не единственное «окно в прошлое».

Я почти уверен, что каждый читатель этой книги, хотя бы и смутно, помнит рисунок из учебника биологии, на котором в нескольких параллельных столбцах было изображено зародышевое развитие представителей разных классов позвоночных — от рыб до млекопитающих. Часто такие изображения в увеличенном виде красуются на стенах школьных кабинетов биологии и потому известны даже тем, кто в принципе игнорировал чтение учебников. Смысл рисунка состоит в том, что на ранних стадиях эмбрионального развития зародыши всех позвоночных удивительно похожи. Все они имеют характерный рыбообразный облик — облик невзрачного изогнутого существа без конечностей, со вздутой передней частью тела и крючковатым хвостом. Это сходство сохраняется недолго: на более поздних стадиях развития пути зародышей расходятся и каждый постепенно приобретает характерные для своего класса и вида черты строения. Перед самым выходом в большую жизнь их уже никак не перепутать. Каждому свое: оленю оленье, а крокодилу — крокодилово. Но любому из нас, позвоночных, в определенный момент нашей личной биографии пришлось недолго «побыть рыбой» и даже иметь жаберные щели. Бо́льшая часть позвоночных во взрослом состоянии дышит легкими, но наличие жаберных щелей у их зародышей вовсе не ошибка природы, а необходимейший элемент зародышевого развития. Как пишут зоологи из МГУ им. М. В. Ломоносова В. В. Малахов и О. В. Ежова, «жаберные кровеносные дуги водных позвоночных преобразуются у наземных в главные сосуды кровеносной системы — сонные артерии, дуги аорты и легочные артерии… Хрящевые зачатки жаберных дуг дают важнейшие элементы скелета человека — челюсти, слуховые косточки, шиловидный отросток височной кости и хрящи гортани. Любой дефект в развитии жаберных щелей приводит к необратимым нарушениям и гибели зародыша… Так что можно сказать, что без них и человек не был бы человеком»[58].

О наличии жаберных дуг у зародышей птиц и млекопитающих и тому подобных чудесах зоологи знали уже почти 200 лет назад. В 1828 г. молодой и подающий очень большие надежды биолог Карл Эрнст фон Бэр[59] обобщил данные собственных наблюдений и результаты, полученные другими авторами, в виде закона зародышевого сходства, который часто формулируется так: эмбрионы последовательно переходят в своем развитии от общих признаков типа ко все более специальным признакам (класса, отряда, рода, вида, особи). Или так: чем более ранние стадии индивидуального развития сравниваются, тем больше сходства [между ними] удается обнаружить.

Бэр скончался на девятом десятке лет, прожив долгую и очень насыщенную трудами жизнь, был свидетелем споров вокруг теории Дарвина, сам принимал участие в этой полемике на стороне противников дарвинизма и до конца жизни так и не принял эволюционную концепцию. Поэтому объяснение сформулированному им закону пришлось искать другим ученым. Сейчас мы знаем, что зародышевое сходство позвоночных отражает общность их эволюционной истории, их общее родство и единство происхождения от давно вымерших предков. О значении эмбриологических данных для эволюционной теории писал Дарвин (хотя, скорее, мимоходом) в «Происхождении видов». Его современник Фриц Мюллер, немецкий зоолог, эмигрировавший в Бразилию, в 1864 г. выпустил об этом предмете книгу с полемическим названием «За Дарвина» (Für Darwin). Но особенно широкую известность закон Бэра получил благодаря деятельности Эрнста Геккеля, с которым мы уже встречались в предыдущей главе. В поисках доказательств правоты Дарвина он обратился к эмбриологии и возвестил ученому миру свой очередной закон, получивший название биогенетического. Геккель был убежден, что в ходе зародышевого развития каждый организм повторяет (выражаясь геккелевским языком, рекапитулирует) стадии развития своих эволюционных предков. Или, в самой короткой, лозунговой форме: онтогенез есть краткое и быстрое повторение филогенеза. В свое время этот закон, как и многое другое, что вышло из творческой лаборатории Геккеля, получил широкую известность, и не только среди профессиональных биологов. Многие современные ученые относятся к «биогенетическому закону» крайне скептически. Он имеет массу исключений, да и нет нужды доказывать, что человеческий эмбрион, к примеру, не проходит никакой особой «земноводной» или «рептильной» стадии, хотя и земноводные, и рептилии были в числе наших непосредственных предков. Очевидно, что автор этого «закона» был настолько захвачен новой идеей, что порой не обращал внимания на возможные противоречия с наблюдаемыми фактами и даже на поиск эмпирических доказательств в пользу своих построений. По словам одного из его биографов, Геккель, «увлеченный борьбой за дарвинизм… всецело был поглощен пропагандой своих идей, и научная точность формулировок… отступала у него нередко на второй план»[60].

1 ... 14 15 16 17 18 19 20 21 22 ... 75
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?