Шрифт:
Интервал:
Закладка:
Можно построить и правильный 17-угольник, но это уже не столь просто. А вот задача о построении правильного семиугольника не имеет решения – это в конце XVIII в. доказал один из величайших математиков всех времён Карл Фридрих Гаусс (Johann Carl Friedrich Gauß, 1777–1855), уже упоминавшийся в главе 1 в связи с неевклидовой геометрией. До Гаусса существование таких задач на построение, решить которые невозможно, было лишь правдоподобной гипотезой. Он же указал способ построения правильного 17-угольника.
Вот ещё пример весьма известной и древней задачи на построение – задача о трисекции угла. В ней требуется для каждого угла построить другой угол, составляющий треть исходного. Для некоторых углов специального вида, например для прямого угла, построение трети не составляет труда. Однако в середине XIX в. было доказано, что некоторые углы невозможно построить, оперируя линейкой и циркулем. Оказалось, в частности, что невозможно построить углы в 10° и 20° и, следовательно, осуществить трисекцию углов в 30° и 60°. Тем самым была установлена неразрешимость задачи о трисекции угла.
Итак, в каждой задаче на построение требуется указать некоторый способ построения. Когда такой способ предъявляется, как для задачи о середине отрезка, он [способ] обычно не вызывает сомнений. Но, когда утверждается, что такого способа нет, как это утверждается для квадратуры круга или для трисекции угла, возникает необходимость уточнить, чего именно нет.
Всякий способ построения состоит в указании некоторой последовательности разрешённых операций. Последовательность эта – своя для каждой задачи. Сам же перечень разрешённых операций один и тот же для всех задач на построение. Он весьма невелик, и мы сейчас с ним познакомимся.
Прежде всего это операции, выполняемые при помощи линейки. Читателя может удивить множественное число. На что ещё годна линейка, кроме черчения прямой? А вот на что: чертить луч, т. е. полупрямую; чертить отрезок. Более точно, разрешается, приложив линейку к двум уже построенным точкам, начертить отрезок между этими точками; или луч, начинающийся в одной из этих точек и проходящий через другую; или прямую, проходящую через эти две точки. «Господи! – воскликнет читатель. – Да это же и так ясно! Стоило ли тратить слова на такую очевидность?» Еще как стоило. Объясню почему. Рассмотрим ещё одну операцию, выполнить которую не сложнее, чем провести прямую через две точки, но которая, однако же, не входит в число разрешённых: через данную точку провести касательную к данной окружности. Начертив окружность и взяв точку вне круга, читатель убедится, как легко провести касательную, используя реальную, деревянную или металлическую, линейку. Тем не менее в перечень разрешённых операций проведение касательной не включено. Мы только что прибегли к важному, как нам кажется, приёму обучения понятиям: надо приводить примеры не только того, что входит в объём вводимого понятия, но и того, что в его объём не входит. Так, чтобы на примерах объяснить, что такое чётное число, надо не только сказать, что числа 0, 2, 4, 6 и т. д. являются чётными, но и упомянуть, что числа 1, 3, 5, 7 и т. д. чётными не являются; чтобы объяснить марсианину, что такое кошка, надо предъявить ему не только несколько кошек, но также и несколько собак, сообщив, что это не кошки.
При помощи циркуля выполняют такие операции. Разрешается, установив иглу циркуля в одну уже построенную точку, а стило – в другую уже построенную точку, начертить окружность. И даже более общо: разрешается, установив иглу и стило в две уже построенные точки, не меняя раствора циркуля, перенести иглу в третью уже построенную точку и начертить окружность.
Разрешается находить пересечения уже построенных прямых, лучей, отрезков, окружностей и дуг окружностей (но не всяких дуг, а расположенных между двумя уже построенными точками).
Наконец, разрешается совершать так называемый выбор произвольной точки, т. е. нанести стилом точку в любом месте плоскости, а также в любом месте уже построенной фигуры и использовать эту точку в дальнейших построениях. (Термин «фигура» обозначает здесь отрезок, луч, прямую, окружность, дугу окружности, а также участок плоскости, граница которой составлена из перечисленных только что простейших фигур.)
Только теперь, после описания всех разрешённых операций, обретает точный смысл утверждение о нерешимости той или иной задачи на построение, в частности задачи о квадратуре круга. Отсутствие решения означает здесь отсутствие такой цепочки разрешённых операций, которая приводила бы от круга к квадрату той же площади.
Заметим, что сам перечень разрешённых операций в значительной степени обусловлен историческими причинами и, вообще говоря, мог бы быть другим. Например, можно было бы включить в число разрешённых операций построение касательной, о котором говорилось выше. (Заметим, кстати, что это не дало бы ничего принципиально нового, потому что касательную можно построить, подобрав подходящую цепочку разрешённых операций из старого перечня.) Можно было бы включить в число разрешённых операций вычерчивание эллипса, ведь устройство для его вычерчивания лишь немногим сложнее циркуля. (Достаточно вбить два гвоздя в фокусы будущего эллипса и протянуть между ними нить, длина которой больше расстояния между фокусами. Зацепим нить стилом и натянем. Перемещая стило так, чтобы нить оставалась натянутой, получим эллипс.) Да лёгкость выполнения разрешённой операции не должна нас заботить: строго говоря, мы вправе объявить разрешённой любую операцию по нашему усмотрению. Перечень разрешённых операций, с чисто логической точки зрения, достаточно произволен. Однако, будучи выбран, он уже не меняется. Полезная аналогия – свод юридических актов. С чисто логической, опять же, точки зрения законы произвольно устанавливаются законодателем, но будучи принятыми, они уже не подлежат изменению, хотя бы на определённый период. Во всяком случае так должно быть.
Объясним теперь, почему задачам на построение уделено здесь такое внимание. На их примере мы пытались продемонстрировать некоторые математические представления принципиального характера, представления, которые можно отнести к философии математики, а то и к философии вообще:
1. Задача, или проблема, всегда есть требование что-то найти, указать, построить.
2. Необходимо уточнять, в пределах какого класса объектов мы ищем решение задачи.